Home About us Contact | |||
S. Pombe (s + pombe)
Selected AbstractsDeletion of mdmB impairs mitochondrial distribution and morphology in Aspergillus nidulansCYTOSKELETON, Issue 2 2003Katrin V. Koch Abstract Mitochondria form a dynamic network of interconnected tubes in the cells of Saccharomyces cerevisiae or filamentous fungi such as Aspergillus nidulans,Neurospora crassa, or Podospora anserina. The dynamics depends on the separation of mitochondrial fragments, their movement throughout the cell, and their subsequent fusion with the other parts of the organelle. Interestingly, the microtubule network is required for the distribution in N. crassa and S. pombe, while S. cerevisiae and A. nidulans appear to use the actin cytoskeleton. We studied a homologue of S. cerevisiae Mdm10 in A. nidulans, and named it MdmB. The open reading frame is disrupted by two introns, one of which is conserved in mdm10 of P. anserina. The MdmB protein consists of 428 amino acids with a predicted molecular mass of 46.5 kDa. MdmB shares 26% identical amino acids to Mdm10 from S. cerevisiae, 35% to N. crassa, and 32% to the P. anserina homologue. A MdmB-GFP fusion protein co-localized evenly distributed along mitochondria. Extraction of the protein was only possible after treatment with a non-ionic and an ionic detergent (1% Triton X-100; 0.5% SDS) suggesting that MdmB was tightly bound to the mitochondrial membrane fraction. Deletion of the gene in A. nidulans affected mitochondrial morphology and distribution at 20°C but not at 37°C. mdmB deletion cells contained two populations of mitochondria at lower temperature, the normal tubular network plus some giant, non-motile mitochondria. Cell Motil. Cytoskeleton 55:114,124, 2003. © 2003 Wiley-Liss, Inc. [source] Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1 protein in a novel heterotetrameric structureFEBS JOURNAL, Issue 20 2003Ryoichi Saiki The analysis of the structure and function of long chain-producing polyprenyl diphosphate synthase, which synthesizes the side chain of ubiquinone, has largely focused on the prokaryotic enzymes, and little is known about the eukaryotic counterparts. Here we show that decaprenyl diphosphate synthase from Schizosaccharomyces pombe is comprised of a novel protein named Dlp1 acting in partnership with Dps1. Dps1 is highly homologous to other prenyl diphosphate synthases but Dlp1 shares only weak homology with Dps1. We showed that the two proteins must be present simultaneously in Escherichia coli transformants before ubiquinone-10, which is produced by S. pombe but not by E. coli, is generated. Furthermore, the two proteins were shown to form a heterotetrameric complex. This is unlike the prokaryotic counterparts, which are homodimers. The deletion mutant of dlp1 lacked the enzymatic activity of decaprenyl diphosphate synthase, did not produce ubiquinone-10 and had the typical ubiquinone-deficient S. pombe phenotypes, namely hypersensitivity to hydrogen peroxide, the need for antioxidants for growth on minimal medium and an elevated production of H2S. Both the dps1 (formerly dps) and dlp1 mutants could generate ubiquinone when they were transformed with a bacterial decaprenyl diphosphate synthase, which functions in its host as a homodimer. This indicates that both dps1 and dlp1 are required for the S. pombe enzymatic activity. Thus, decaprenyl diphosphate from a eukaryotic origin has a heterotetrameric structure that is not found in prokaryotes. [source] Pgt1, a glutathione transporter from the fission yeast Schizosaccharomyces pombeFEMS YEAST RESEARCH, Issue 6 2008Anil Thakur Abstract The Schizosaccharomyces pombe ORF, SPAC29B12.10c, a predicted member of the oligopeptide transporter (OPT) family, was identified as a gene encoding the S. pombe glutathione transporter (Pgt1) by a genetic strategy that exploited the requirement of the cys1a, strain of S. pombe (which is defective in cysteine biosynthesis) for either cysteine or glutathione, for growth. Disruption of the ORF in the cys1a, strain led to an inability to grow on glutathione as a source of cysteine. Cloning and subsequent biochemical characterization of the ORF revealed that a high-affinity transporter for glutathione (Km=63 ,M) that was found to be localized to the plasma membrane. The transporter was specific for glutathione, as significant inhibition in glutathione uptake could be observed only by either reduced or oxidized glutathione, or glutathione conjugates, but not by dipeptides or tripeptides. Furthermore, although glu,cys,gly, an analogue of glutathione (,-glu,cys,gly), could be utilized as a sulphur source, the growth was not Pgt1 dependent. This further underlined the specificity of this transporter for glutathione. The strong repression of pgt1+ expression by cysteine suggested a role in scavenging glutathione from the extracellular environment for the maintenance of sulphur homeostasis in this yeast. [source] Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic ,-tubulin complexesGENES TO CELLS, Issue 4 2006Hirohisa Masuda The ,-tubulin complex acts as a nucleation unit for microtubule assembly. It remains unknown, however, how spatial and temporal regulation of the complex activity affects microtubule-mediated cellular processes. Alp4 is one of the essential components of the S. pombe,-tubulin complex. We show here that overproduction of a carboxy-terminal form of Alp4 (Alp4C) and its derivatives tagged to a nuclear localization signal or to a nuclear export signal affect localization of ,-tubulin complexes and induces novel phenotypes that reflect distinct functions of nuclear and cytoplasmic ,-tubulin complexes. Nuclear Alp4C induces a Wee1-dependent G2 delay, reduces the levels of the ,-tubulin complex at the spindle pole body, and results in defects in mitotic progression including spindle assembly, cytoplasmic microtubule disassembly, and chromosome segregation. In contrast, cytoplasmic Alp4C induces oscillatory nuclear movement and affects levels of cell polarity markers, Bud6 and Tip1, at the cell ends. These results demonstrate that regulation of nuclear ,-tubulin complex activity is essential for cell cycle progression through the G2/M boundary and M phase, whereas regulation of cytoplasmic ,-tubulin complex activity is important for nuclear positioning and cell polarity control during interphase. [source] The carboxy-terminus of Alp4 alters microtubule dynamics to induce oscillatory nuclear movement led by the spindle pole body in Schizosaccharomyces pombeGENES TO CELLS, Issue 4 2006Hirohisa Masuda Alp4 is an essential component of the S. pombe,-tubulin complex. Overproduction of the carboxy-terminus of Alp4 induces oscillatory nuclear movement led by the spindle pole body (SPB). The movement is not dependent on cytoplasmic dynein dhc1, or kinesin-related proteins pkl1 and klp2. Rates of SPB movement correlate with elongation rates of microtubules (MTs) extending backwards from the moving SPB (backward-extending MTs), showing that pushing forces exerted by backward-extending MTs move the nucleus via the SPB. These backward-extending MTs are more stable than those of control cells and, thus, are able to push the SPB further towards the cell end, inducing nuclear oscillation with larger amplitudes than in control cells. SPB movement is biased towards the new end of the cell where levels of the CLIP170 homolog Tip1 increase, suggesting that the movement is related to MT-mediated cell polarity control. These results demonstrate that the carboxy-terminus of Alp4 alters MT dynamics and induces nuclear oscillation by modulating a nuclear positioning mechanism based on the balance of MT pushing forces, and suggest that regulation of ,-tubulin complex activity is important for controlling MT dynamics and nuclear positioning. [source] Calcineurin phosphatase in signal transduction: lessons from fission yeastGENES TO CELLS, Issue 7 2002Reiko Sugiura Calcineurin (protein phosphatase 2B), the only serine/threonine phosphatase under the control of Ca2+/calmodulin, is an important mediator in signal transmission, connecting the Ca2+ -dependent signalling to a wide variety of cellular responses. Furthermore, calcineurin is specifically inhibited by the immunosuppressant drugs cyclosporin A and tacrolimus (FK506), and these drugs have been a powerful tool for identifying many of the roles of calcineurin. Calcineurin is enriched in the neural tissues, and also distributes broadly in other tissues. The structure of the protein is highly conserved from yeast to man. The combined use of powerful genetics and of specific calcineurin inhibitors in fission yeast Schizosaccharomyces pombe (S. pombe) identified new components of the calcineurin pathway, and defined new roles of calcineurin in the regulation of the many cellular processes. Recent data has revealed functional interactions in which calcineurin phosphatase is involved, such as the cross-talk between the Pmk1 MAP kinase signalling, or the PI signalling. Calcineurin also participates in membrane traffic and cytokinesis of fission yeast through its functional connection with members of the small GTPase Rab/Ypt family, and Type II myosin, respectively. These findings highlight the potential of fission yeast genetic studies to elucidate conserved elements of signal transduction cascades. [source] Phosphatidylinositol 3-phosphate 5-kinase is required for the cellular response to nutritional starvation and mating pheromone signals in Schizosaccharomyces pombeGENES TO CELLS, Issue 2 2002Masayo Morishita Background: Phosphatidylinositol (3,5) bisphosphate, which is converted from phosphatidylinositol 3-phosphate by phosphatidylinositol 3-phosphate 5-kinase, is implicated in vacuolar functions and the sorting of cell surface proteins within endosomes in the endocytic pathway of budding yeast. A homologous protein, SpFab1p, has been found in the fission yeast Schizosaccharomyces pombe, but its role is not known. Results: Here we report that SpFab1p is encoded by ste12+ known as a fertility gene in S. pombe. The ste12 mutant grew normally under stress-free conditions, but was highly vacuolated and swelled at high temperatures and under starvation conditions. In nitrogen-free medium, ste12 cells were arrested in G1 phase, but partially defective in the expression of genes responsible for mating and meiosis. The ste12 mutant was defective both in the production of, and in the response to, mating pheromones. The amount of the pheromone receptor protein Map3p, was substantially decreased in ste12 cells. Map3p was transported to the cell surface, then internalized and eventually transported to the vacuolar lumen, even in the ste12 mutant. Conclusion: The results indicate that phosphatidylinositol(3,5)bisphosphate is essential for cellular responses to various stresses and for the mating pheromone signalling under starvation conditions. [source] Characterization of GTPase-activating proteins for the function of the Rho-family small GTPases in the fission yeast Schizosaccharomyces pombeGENES TO CELLS, Issue 12 2001Kentaro Nakano Background The small GTPase Rho1 has been shown to regulate the organization of the actin cytoskeleton and formation of the cell wall in the fission yeast Schizosaccharomyces pombe. Activity of Rho1 must be precisely regulated in vivo, since both increases and decreases in its activity affect cell growth and shape. Thus, it is important to clarify the mechanism by which the activity of Rho1 is regulated in vivo. Results Seven genes encoding putative GAPs, GTPase-activating proteins, for the function of the Rho-family proteins were isolated from S. pombe. After disruption of these genes, rga1+ was found to play important roles in cell growth and morphogenesis. In rga1 null cells, delocalized F-actin patches and extraordinary thickening of the cell wall and the septum were observed. On the other hand, over-expression of Rga1 produced shrunken or dumpy cells. The phenotype of the rga1 null cells or the Rga1-over-expressing cells was similar to that of cells containing abnormally high or low Rho1 activity, respectively. Moreover, direct association of Rga1 with Rho1 was shown. Rga1 was localized to the cell ends and septum where Rho1 is known to function. Conclusions In S. pombe, Rga1 is involved in the F-actin patch localization, cell morphogenesis, regulation of septation, and cell wall synthesis, probably functioning as a GAP for the function of Rho1. [source] Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA libraryGENES TO CELLS, Issue 3 2000Da-Qiao Ding Background Intracellular localization is an important part of the characterization of a gene product. In an attempt to search for genes based on the intracellular localization of their products, we constructed a green fluorescent protein (GFP)-fusion genomic DNA library of S. pombe. Results We constructed the S. pombe GFP-fusion genomic DNA library by fusing, in all three reading frames, random fragments of genomic DNA to the 5, end of the GFP gene in such a way that expression of potential GFP-fusion proteins would be under the control of the own promoters contained in the genomic DNA fragments. Fission yeast cells were transformed with this plasmid library, and microscopic screening of 49 845 transformants yielded 6954 transformants which exhibited GFP fluorescence, of which 728 transformants showed fluorescence localized to distinct intracellular structures such as the nucleus, the nuclear membrane, and cytoskeletal structures. Plasmids were isolated from 516 of these transformants, and a determination of their DNA sequences identified 250 independent genes. The intracellular localizations of the 250 GFP-fusion constructs was categorized as an image database; using this database, DNA sequences can be searched for based on the localizations of their products. Conclusions A number of new intracellular structural components were found in this library. The library of GFP-fusion constructs also provides useful fluorescent markers for various intracellular structures and cellular activities, which can be readily used for microscopic observation in living cells. [source] Rga2 is a Rho2 GAP that regulates morphogenesis and cell integrity in S. pombeMOLECULAR MICROBIOLOGY, Issue 4 2008Ma Antonia Villar-Tajadura Summary Schizosaccharomyces pombe Rho2 GTPase regulates ,-D-glucan synthesis and acts upstream of Pck2 to activate the MAP kinase pathway for cell integrity. However, little is known about its regulation. Here we describe Rga2 as a Rho2 GTPase-activating protein (GAP) that regulates cell morphology. rga2+ gene is not essential for growth but its deletion causes longer and thinner cells whereas rga2+ overexpression causes shorter and broader cells. rga2+ overexpression also causes abnormal accumulation of Calcofluor-stained material and cell lysis, suggesting that it also participates in cell wall integrity. Rga2 localizes to growth tips and septum region. The N-terminal region of the protein is required for its correct localization whereas the PH domain is necessary exclusively for Rga2 localization to the division area. Also, Rga2 localization depends on polarity markers and on actin polymerization. Rga2 interacts with Rho2 and possesses in vitro and in vivo GAP activity for this GTPase. Accordingly, rga2, cells contain more ,-D-glucan and therefore partially suppress the thermosensitivity of mok1,664 cells, which have a defective ,-D-glucan synthase. Additionally, genetic interactions and biochemical analysis suggest that Rga2 regulates Rho2,Pck2 interaction and might participate in the regulation of the MAPK cell integrity pathway. [source] The ,-1,3-glucanosyltransferase gas4p is essential for ascospore wall maturation and spore viability in Schizosaccharomyces pombeMOLECULAR MICROBIOLOGY, Issue 5 2008Marķa De Medina-Redondo Summary Meiosis is the developmental programme by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. The formation of the Schizosaccharomyces pombe ascospore wall requires the co-ordinated activity of enzymes involved in the biosynthesis and modification of its components, such as glucans. During sporogenesis, the ,-1,3-glucan synthase bgs2p synthesizes linear ,-1,3-glucans, which remain unorganized and alkali-soluble until covalent linkages are set up between ,-1,3-glucans and other cell wall components. Several proteins belonging to the glycoside hydrolase family 72 (GH72) with ,-1,3-glucanosyltransferase activity have been described in other organisms, such as the Saccharomyces cerevisiae Gas1p or the Aspergillus fumigatus Gel1p. Here we describe the characterization of gas4+, a new gene that encodes a protein of the GH72 family. Deletion of this gene does not lead to any apparent defect during vegetative growth, but homozygous gas4, diploids show a sporulation defect. Although meiosis occurs normally, ascospores are unable to mature or to germinate. The expression of gas4+ is strongly induced during sporulation and a yellow fluorescent protein (YFP),gas4p fusion protein localizes to the ascospore periphery during sporulation. We conclude that gas4p is required for ascospore maturation in S. pombe. [source] Proteome analysis of Schizosaccharomyces pombe by two-dimensional gel electrophoresis and mass spectrometryPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2006Kyung-Hoon Hwang Abstract The fission yeast Schizosaccharomyces pombe (S. pombe) is a unicellular eukaryote and contains many genes and regulatory mechanisms that are close to those of mammals. In this study, we performed a global proteomic analysis of the fission yeast S. pombe wild type h,S L 972 proteome. More than 1500 protein spots were visualized on silver stained 2-D gels in the 3,10 pI range with a high resolution and high reproducibility. Protein identification was carried out by MALDI-TOF-MS and/or nanoLC-MS/MS. Advantage of the complementarity of these two MS approaches was used to enhance the identification quality. So far, 364 proteins (representing 157 different proteins) have been identified. We report here the identification of 117 new proteins on our 2-D reference map of this yeast compared to the first reference map. Of these identified proteins, 40.1% were involved in metabolism. The present work provides a very useful tool for all studies relying on S. pombe as a model organism and is a considerable complement to the first reference map of S. pombe published recently by Sun and coworkers (Sun, N., Jang, J., Lee, S., Kim, S. et al.., Proteomics 2005, 5, 1574,1579). [source] The Ras pathway and spindle assembly collide?BIOESSAYS, Issue 4 2001Marisa Segal Although alterations in Ras signalling are found in about 30% of human cancers, the transforming activity of oncogenic Ras is not fully understood. In a recent paper, a putative Ras1 effector in S. pombe, named Scd1, was reported to localize to mitotic apindies. Scd1 physically associates with Moe1, a factor that may contribute to the inherent inatability of microtubules (MTs) and appears to be needed for proper apindle function. Altered MT dynamics within the spindle are likely to affect spindle assembly and chromosome capture, processes that need to be delicately controlled if cells are to guard against genome instability adn transformation. BloEssays 23: 307-310,2001.©2001 John Willey & Sons, Inc. [source] Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histonesBIOPOLYMERS, Issue 4 2007Toshiro Kobori Abstract Chromatin is composed of genomic DNA and histones, forming a hierarchical architecture in the nucleus. The chromatin hierarchy is common among eukaryotes despite different intrinsic properties of the genome. To investigate an effect of the differences in genome organization, chromatin unfolding processes were comparatively analyzed using Schizosaccaromyces pombe, Saccharomyces cerevisiae, and chicken erythrocyte. NaCl titration showed dynamic changes of the chromatin. 400,1000 mM NaCl facilitated beads with ,115 nm in diameter in S. pombe chromatin. A similar transition was also observed in S. cerevisiae chromatin. This process did not involve core histone dissociation from the chromatin, and the persistence length after the transition was ,26 nm for S. pombe and ,28 nm for S. cerevisiae, indicating a salt-induced unfolding to "beads-on-a-string" fibers. Reduced salt concentration recovered the original structure, suggesting that electrostatic interaction would regulate this discrete folding-unfolding process. On the other hand, the linker histone was extracted from chicken chromatin at 400 mM NaCl, and AFM observed the "beads-on-a-string" fibers around a nucleus. Unlike yeast chromatin, therefore, this unfolding was irreversible because of linker histone dissociation. These results indicate that the chromatin unfolding and refolding depend on the presence and absence of the linker histone, and the length of the linker DNA. © 2007 Wiley Periodicals, Inc. Biopolymers 85:295,307, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |