Home About us Contact | |||
Autoimmune Phenomena (autoimmune + phenomenon)
Selected AbstractsAutoimmune gestational diabetes mellitus: a distinct clinical entity?DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2001Dídac Mauricio Abstract This review gives an update of the present knowledge on what is defined here as autoimmune gestational diabetes mellitus (GDM). Autoimmune phenomena associated with type 1 diabetes mellitus (DM) can be detected in a subgroup of women with GDM. Islet autoantibodies are present in sera from women with GDM with variable frequency. Distinct phenotypic and genotypic features may be recognised in this subset of women with GDM, which are representative of a distinct clinical entity. Furthermore, these women are at increased risk of developing type 1,DM after pregnancy. However, the eventual progression of the autoimmune destruction of beta-cells in these subjects may follow different time-course patterns thus leading to variable forms of presentation of autoimmune DM. As a high-risk group for type 1 diabetes, women with previous autoimmune GDM may be candidates for potential immune intervention strategies. Copyright © 2001 John Wiley & Sons, Ltd. [source] Differential regulation of SOCS-1 signalling in B and T lymphocytes by hepatitis C virus core proteinIMMUNOLOGY, Issue 2 2008Zhi Qiang Yao Summary Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity, autoimmune phenomena and lymphomagenesis, supporting a role for lymphocyte dysregulation during persistent viral infection. We have shown that HCV core protein inhibits T-cell functions through interaction with a complement receptor, gC1qR. Here, we further report that B cells also express gC1qR that can be bound by HCV core protein. Importantly, using flow cytometry, we demonstrated differential regulation of B and T lymphocytes by the HCV core,gC1qR interaction, with down-regulation of CD69 activation in T cells but up-regulation of CD69 activation and cell proliferation in B cells. HCV core treatment led to decreased interferon-, production in CD8+ T cells but to increased immunoglobulin M and immunoglobulin G production as well as cell surface expression of costimulatory and chemokine receptors, including CD86 (B7-2), CD154 (CD40L) and CD195 (CCR5), in CD20+ B cells. Finally, we showed down-regulation of suppressor of cytokine signalling-1 (SOCS-1) using real-time reverse transcription,polymerase chain reaction, accompanied by up-regulation of signal transducer and activator of transcription-1 (STAT1) phosphorylation in B cells in response to HCV core protein, with the opposite pattern observed in HCV core-treated T cells. This study demonstrates differential regulation of B and T lymphocytes by HCV core and supports a mechanism by which lymphocyte dysregulation occurs in the course of persistent HCV infection. [source] A Critical Appraisal of Vitiligo Etiologic Theories.PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2003Is Melanocyte Loss a Melanocytorrhagy? Common generalized vitiligo is an acquired depigmenting disorder characterized by a chronic and progressive loss of melanocytes from the epidermis and follicular reservoir. However, the mechanism of melanocyte disappearance has never been clearly understood, and the intervention of cellular and humoral autoimmune phenomena as primary events remains unproven. In this review, is discussed the data supporting the major theories of vitiligo, namely melanocyte destruction (autoimmune, neural and impaired redox status) and melanocyte inhibition or defective adhesion. Based on recent morphologic findings in vivo supporting a chronic detachment and transepidermal loss of melanocytes in common generalized vitiligo, a new theory is suggested proposing melanocytorrhagy as the primary defect underlying melanocyte loss, integrating most of the possible triggering/precipitating/enhancing effects of other known factors. [source] Modulation of peripheral B cell tolerance by CD72 in a murine modelARTHRITIS & RHEUMATISM, Issue 10 2008Daniel Hsieh-Hsin Li Objective B cells play a dominant role in the pathogenesis of several autoimmune diseases, including systemic lupus erythematosus. It is not well understood how B cell signaling contributes to autoantibody production. The goal of this study was to elucidate the role of CD72 in modulating B cell receptor (BCR),mediated tolerogenic signaling and peripheral B cell tolerance. Methods A mouse model utilizing hen egg lysozyme (HEL) "anergic" B cells was studied. CD72-deficient mice carrying the BCR-specific IgHEL and/or soluble HEL (sHEL) transgenes were generated by breeding IgHEL -transgenic MD4 mice and/or sHEL -transgenic ML5 mice with congenic, CD72-deficient C57BL/6J mice. Normal and anergic B cells were isolated for analyses of B cell signaling. Aged wild-type and CD72-deficient mice were also examined for autoimmune phenomena. Results In the absence of CD72, anergic B cells inappropriately proliferated and survived in response to stimulation with self antigen. Biochemical analyses indicated that in anergic B cells, CD72 dominantly down-regulated BCR signaling to limit the antigen-induced elevation in [Ca2+]i and the activation of NFATc1, NF-,B, MAPK, and Akt. Mechanistically, CD72 was associated with, and regulated, the molecular adaptor Cbl-b in anergic B cells, suggesting that Cbl-b may play a role in mediating the negative effects of CD72 on BCR signaling. Moreover, in aged CD72-deficient mice, spontaneous production of antinuclear and anti,double-stranded DNA autoantibodies and features of lupus-like autoimmune disease were observed. Conclusion CD72 is required to maintain B cell anergy and functions as a regulator of peripheral B cell tolerance. Thus, altered CD72 expression may play a role during the development of systemic lupus erythematosus. [source] |