Round Goby (round + goby)

Distribution by Scientific Domains


Selected Abstracts


Chemical amplification in an invaded food web: Seasonality and ontogeny in a high-biomass, low-diversity ecosystem,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2008
Carla A. Ng
Abstract The global spread of invasive species is changing the structure of aquatic food webs worldwide. The North American Great Lakes have proved particularly vulnerable to this threat. In nearshore areas, invasive benthic species such as dreissenid mussels and round gobies (Neogobius melanostomus) have gained dominance in recent years. Such species are driving the flow of energy and material from the water column to the benthic zone, with dramatic effect on nutrient and contaminant cycling. Here, we develop a stage-structured model of a benthified food web in Lake Michigan with seasonal resolution and show how its bioaccumulation patterns differ from expected ones. Our model suggests that contaminant recycling through the consumption of lipid-rich fish eggs and mussel detritus is responsible for these differences. In southern Lake Michigan's Calumet Harbor (Chicago, IL, USA), round gobies have nitrogen isotope signatures with considerable spread, with some values higher than their predators and others lower than their prey. Contrary to patterns observed in linear pelagic systems, we predict that polychlorinated biphenyl (PCB) concentrations in these fish decrease with increasing size due to the lipid- and benthos-enriched diets of smaller fish. We also present here round goby PCB concentrations measured in 2005 after an invasional succession in Calumet Harbor and demonstrate how the change from one invasive mussel species to another may have led to a decrease in round goby PCB accumulation. Our results suggest that benthic-dominated systems differ from pelagic ones chiefly due to the influence of detritus and that these effects are exacerbated in systems with low species diversity and high biomass. [source]


Diel interactions between prey behaviour and feeding in an invasive fish, the round goby, in a North American river

FRESHWATER BIOLOGY, Issue 4 2006
STEPHANIE M. CARMAN
Summary 1. We studied the diet of the invasive round goby (Neogobius melanostomus) on a diel basis in the Flint River, a warmwater stream in Michigan, U.S.A. Diet and available prey samples were collected seven times over a 24 h period in four consecutive months. The section of river studied lacked zebra mussels (Dreissena polymorpha), the primary prey of adult round gobies elsewhere in the Great Lakes region. 2. Diet changed on a diel basis with hydropsychid caddisfly and chironomid larvae predominating during the day, chironomid pupae dominating in the evening and heptageniid mayflies dominating at night. Simultaneous study of macroinvertebrate drift suggested that caddisfly and chironomid larvae were most likely picked from submerged rocks, chironomid pupae were most likely taken during their emergent ascent and mayflies were either captured from the drift or picked from rocks. 3. The Flint River lacks a diverse darter (Family: Percidae) and sculpin (Family: Cottidae) fauna and it appears that the round goby has occupied a generalised darter/sculpin niche. Our results indicate that round gobies have the potential to invade successfully riverine systems, particularly those lacking a diverse benthic fish assemblage. [source]


Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns

MOLECULAR ECOLOGY, Issue 1 2009
JOSHUA E. BROWN
Abstract The Eurasian round goby Neogobius melanostomus (Apollonia melanostoma) invaded the North American Great Lakes in 1990 through ballast water, spread rapidly, and now is widely distributed and moving through adjacent tributaries. We analyse its genetic diversity and divergence patterns among 25 North American (N = 744) and 22 Eurasian (N = 414) locations using mitochondrial DNA cytochrome b gene sequences and seven nuclear microsatellite loci in order to: (i) identify the invasion's founding source(s), (ii) test for founder effects, (iii) evaluate whether the invasive range is genetically heterogeneous, and (iv) determine whether fringe and central areas differ in genetic diversity. Tests include FST analogues, neighbour-joining trees, haplotype networks, Bayesian assignment, Monmonier barrier analysis, and three-dimensional factorial correspondence analysis. We recovered 13 cytochrome b haplotypes and 232 microsatellite alleles in North America and compared these to variation we previously described across Eurasia. Results show: (i) the southern Dnieper River population was the primary Eurasian donor source for the round goby's invasion of North America, likely supplemented by some alleles from the Dniester and Southern Bug rivers, (ii) the overall invasion has high genetic diversity and experienced no founder effect, (iii) there is significant genetic structuring across North America, and (iv) some expansion areas show reduced numbers of alleles, whereas others appear to reflect secondary colonization. Sampling sites in Lake Huron's Saginaw Bay and Lake Ontario significantly differ from all others, having unique alleles that apparently originated from separate introductions. Substantial genetic variation, multiple founding sources, large number of propagules, and population structure thus likely aided the goby's ecological success. [source]