Rosemary Oil (rosemary + oil)

Distribution by Scientific Domains


Selected Abstracts


Extraction of rosemary essential oil by steam distillation and hydrodistillation

FLAVOUR AND FRAGRANCE JOURNAL, Issue 6 2003
C. Boutekedjiret
Abstract Rosemary oil was extracted by both steam and hydrodistillations then analysed by gas chromatography and gas chromatography,mass spectrometry. The effect of time of extraction enabled us to follow the evolution of the yield and oil composition obtained by both processes. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Larvicidal and oviposition-altering activity of monoterpenoids, trans -anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae),

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2009
Ranil Waliwitiya
Abstract BACKGROUND:Aedes aegypti L. is the major vector of dengue fever and dengue hemorrhagic fever. In an effort to find effective tools for control programs to reduce mosquito populations, the authors assessed the acute toxicities of 14 monoterpenoids, trans -anithole and the essential oil of rosemary against different larval stages of Ae. aegypti. The potential for piperonyl butoxide (PBO) to act as a synergist for these compounds to increase larvicidal activity was also examined, and the oviposition response of gravid Ae. aegypti females to substrates containing these compounds was evaluated in behavioral bioassays. RESULTS: Pulegone, thymol, eugenol, trans -anithole, rosemary oil and citronellal showed high larvicidal activity against all larval stages of Ae. aegypti (LC50 values 10.3,40.8 mg L,1). The addition of PBO significantly increased the larvicidal activity of all test compounds (3,250-fold). Eugenol, citronellal, thymol, pulegone, rosemary oil and cymene showed oviposition deterrent and/or repellent activities, while the presence of borneol, camphor and ,-pinene increased the number of eggs laid in test containers. CONCLUSIONS: This study quantified the lethal and sublethal effects of several phytochemical compounds against all larval stages of Aedes aegypti, providing information that ultimately may have potential in mosquito control programs through acute toxicity and/or the ability to alter reproductive behaviors. Copyright © 2008 Society of Chemical Industry [source]


Antimicrobial activity of clove and rosemary essential oils alone and in combination

PHYTOTHERAPY RESEARCH, Issue 10 2007
YuJie Fu
Abstract In the present study, the antimicrobial activity of the essential oils from clove (Syzygium aromaticum (L.) Merr. et Perry) and rosemary (Rosmarinus officinalis L.) was tested alone and in combination. The compositions of the oils were analysed by GC/MS. Minimum inhibitory concentrations (MIC) against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined for the essential oils and their mixtures. Furthermore, time-kill dynamic processes of clove and rosemary essential oils against Staphylococcus epidermidis, Escherichia coli and Candida albicans were tested. Both essential oils possessed significant antimicrobial effects against all microorganisms tested. The MICs of clove oil ranged from 0.062% to 0.500% (v/v), while the MICs of rosemary oil ranged from 0.125% to 1.000% (v/v). The antimicrobial activity of combinations of the two essential oils indicated their additive, synergistic or antagonistic effects against individual microorganism tests. The time-kill curves of clove and rosemary essential oils towards three strains showed clearly bactericidal and fungicidal processes of 1/2 × MIC, MIC, MBC and 2 × MIC. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Inhibition of quorum-sensing signals by essential oils

PHYTOTHERAPY RESEARCH, Issue 5 2010
Mira Ágnes Szabó
Abstract The role of quorum sensing (QS) is well known in microbial pathogenicity and antibiotic resistance. QS is responsible for motility, swarming, and biofilm production based on the signal molecules, e.g., acylated homoserine lactones (AHLs) produced by micro-organisms above certain population density. The inhibition of QS may reduce pathogenicity, antibiotic resistance and biofilm formation in systemic and local infections. The homoserine lactones and other transmitters contribute to antibiotic resistance and pathogenicity of several bacteria; consequently the inhibition of QS signals reduces the problem of resistance and virulence. Due to the increasing number of persistent non-treatable infections, there is an urgent need to develop new strategies to combat infections that destabilize bacterial communities in the host. The effect of essential oils on bacterial growth and QS were evaluated using the sensor strain Chromobacterium violaceum CV026 and N -acyl homoserine lactone (AHL) producing Escherichia coli ATTC 31298 and the grapevine colonizing Ezf 10-17 strains. Of the tested oils, rose, geranium, lavender and rosemary oils were the most potent QS inhibitors. Eucalyptus and citrus oils moderately reduced pigment production by CV026, whereas the chamomile, orange and juniper oils were ineffective. Copyright © 2009 John Wiley & Sons, Ltd. [source]