Home About us Contact | |||
Rod-like Morphology (rod-like + morphology)
Selected AbstractsMetastable and stable states of xanthan polyelectrolyte complexes studied by atomic force microscopyBIOPOLYMERS, Issue 3 2004Gjertrud Maurstad Abstract The compaction of the semiflexible polysaccharide xanthan with selected multi- and polyvalent cations was studied. Polyelectrolyte complexes prepared at concentrations of 1,2 ,g/ml were observed by tapping mode atomic force microscopy. High-molecular-weight xanthan compacted with chitosan yields a blend of mainly toroidal and metastable structures and a small fraction of rod-like species. Polyelectrolyte complexes of xanthan with polyethylenimine and trivalent chromium yielded similar structures or alternatively less well packed species. Racquet-type morphologies were identified as kinetically trapped states occurring on the folding path toward the energetically stable state of the toroids. Thermal annealing yielded a shift of the distribution of xanthan,chitosan morphologies toward this stable state. Ensembles of toroidal and rod-like morphologies of the xanthan,chitosan structures, collected using an asphericity index, were analyzed. The mean height of the toroids increased upon heating, with a selective increase in the height range above 2 nm. It is suggested that the observed metastable structures are formed from the high-molecular-weight fraction of xanthan and that these are driven toward the toroidal state, being a low-energy state, following annealing. Considered a model system for condensation of semiflexible polymers, the compaction of xanthan by chitosan captures the system at various stages in the folding toward a low-energy state and thus allows experimental analyses of these intermediates and their evolution. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source] Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release,ADVANCED FUNCTIONAL MATERIALS, Issue 23 2008Lei Zhang Abstract In this paper a novel one-step synthetic pathway that controls both functionality and morphology of functionalized periodic helical mesostructured silicas by the co-condensation of tetraethoxysilane and hydrophobic organoalkoxysilane using achiral surfactants as templates is reported. In contrast to previous methods, the hydrophobic interaction between hydrophobic functional groups and the surfactant as well as the intercalation of hydrophobic groups into the micelles are proposed to lead to the formation of helical mesostructures. This study demonstrates that hydrophobic interaction and intercalation can promote the production of long cylindrical micelles, and that the formation of helical rod-like morphology is attributed to the spiral transformation from bundles of hexagonally-arrayed and straight rod-like composite micelles due to the reduction in surface free energy. It is also revealed that small amounts of mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, and phenyltrimethoxysilane can cause the formation of helical mesostructures. Furthermore, the helical mesostructured silicas are employed as drug carriers for the release study of the model drug aspirin, and the results show that the drug release rate can be controlled by the morphology and helicity of the materials. [source] Sphere-to-Rod Transition of Micelles formed by the Semicrystalline Polybutadiene- block -Poly(ethylene oxide) Block Copolymer in a Selective SolventMACROMOLECULAR RAPID COMMUNICATIONS, Issue 5 2010Adriana M. Mihut Abstract We present a morphological study of the micellization of an asymmetric semicrystalline block copolymer, poly(butadiene)- block -poly(ethylene oxide), in the selective solvent n -heptane. The molecular weights of the poly(butadiene) (PB) and poly(ethylene oxide) (PEO) blocks are 26 and 3.5,kg,·,mol,1, respectively. In this solvent, micellization into a liquid PEO-core and a corona of PB-chains takes place at room temperature. Through a thermally controlled crystallization of the PEO core at ,30,°C, spherical micelles with a crystalline PEO core and a PB corona are obtained. However, crystallization at much lower temperatures (,196,°C; liquid nitrogen) leads to the transition from spherical to rod-like micelles. With time these rod-like micelles aggregate and form long needles. Concomitantly, the degree of crystallinity of the PEO-cores of the rod-like micelles increases. The transition from a spherical to a rod-like morphology can be explained by a decrease of solvent power of the solvent n -heptane for the PB-corona chains: n -Heptane becomes a poor solvent at very low temperatures leading to a shrinking of the coronar chains. This favors the transition from spheres to a morphology with a smaller mean curvature, that is, to a cylindrical morphology. [source] A convenient synthesis of nanocrystalline chalcopyrite, CuFeS2 using single-source precursorsAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 12 2009Sujit D. Disale Abstract Nanocrystalline chalcopyrite (CuFeS2) have been synthesized using single-source precursors, CuL2 and Cu(LH)2Cl2 (where LH = monoacetylferrocene thiosemicarbazone) by pyrolysis and solvothermal decomposition methods. The nanocrystals were characterized by UV,visible spectroscopy, X-ray powder diffraction, transmission electron microscopy and energy dispersive X-ray analysis. The magnetic character was determined by the hysteresis loop. CuFeS2 nanocrystallites prepared by the pyrolysis of CuL2 and Cu(LH)2Cl2 have a cubic phase and rod-like morphology with diameters of about 18 and 15 nm, respectively, and lengths of about 195,390 and 100,145 nm, respectively. However, CuFeS2 nanoparticles obtained by solvothermal route from CuL2 and Cu(LH)2Cl2, which are capped with ethylene glycol, possess a nearly spherical shape with an average grain size of 16 and 11 nm, respectively. Copyright © 2009 John Wiley & Sons, Ltd. [source] Heterometal Alkoxides as Precursors for the Preparation of Porous Fe, and Mn,TiO2 Photocatalysts with High EfficienciesCHEMISTRY - A EUROPEAN JOURNAL, Issue 35 2008Xiao-Xin Zou Abstract Transition-metal-doped titanium glycolates (M,TG, with M=Fe, Mn), which are the first non-stoichiometric heterometal alkoxides, have been synthesised through a solvothermal doping approach. X-ray diffraction, UV/Vis diffuse reflectance and ESR spectroscopy revealed that the dopant ion (Fe3+ or Mn2+) is substituted for Ti4+ in the TG lattice. Fe3+ prolongs the crystallisation time of Fe,TG, whereas Mn2+ has a smaller effect on the crystallisation time in comparison with Fe3+. The as-synthesised M,TG materials were used directly as single-source precursors for the preparation of metal-doped titania (M,TiO2) through a simple thermal treatment process. The as-prepared M,TiO2 materials maintain the rod-like morphology of the precursors and possess a mesoporous structure with high crystallinity. It has been proved that the dopant ions are incorporated into the TiO2 lattice at the Ti4+ positions. The photocatalytic activities of the M,TiO2 materials obtained were evaluated by testing the degradation of phenol under UV irradiation. From the photocatalytic results, it was concluded that high crystallinity, a large surface area and appropriate transition-metal-doping are all beneficial to the enhancement of the photocatalytic performance of the doped TiO2 material. In addition, it was noted that in comparison with Mn,TiO2, Fe,TiO2 shows higher photocatalytic activity due to the better inhibition effect of Fe3+ on recombination of photogenerated electron,hole pairs. In contrast to the conventional nanosized TiO2 photocatalyst, the micrometre-sized M,TiO2 particles we obtained can be easily separated and recovered after the photocatalytic reactions. [source] Rapid synthesis of lead oxide nanorods by one-step solid-state chemical reaction at room temperatureCHINESE JOURNAL OF CHEMISTRY, Issue 11 2004Ya-Li Cao Abstract A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation. [source] |