Home About us Contact | |||
Rock Units (rock + unit)
Selected AbstractsInterpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian BasinGEOFLUIDS (ELECTRONIC), Issue 1 2001J. Tóth Abstract The , 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi- to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre-Neogene basement of horst-and-graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr,d Aquitard, with a permeability of less than 1 md (10,15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure,elevation profiles; hydraulic head maps; and hydraulic cross-sections. Pressure,elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight-line segment of a hydrostatic gradient (,st = 9.8067 MPa km,1) and extend to depths of 1400,2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of ,dyn = 10,15 MPa km,1 over a vertical distance of 400,1000 m, or abrupt, with a pressure jump of up to 10 MPa km,1 over less than 100 m and a gradient of ,dyn > 20 MPa km,1. According to the hydraulic head maps for 13 100,500 m thick horizontal slices of the rock framework, the fluid potential in the near-surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna,Tisza interfluve, and the 100,110 m contours in the Nyírség uplands. Below depths of ,,600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ,escarpment' appears gradually in the elevation range of ,,1000 to ,,2800 m along an arcuate line which tracks a major regional fault zone striking NE,SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ,fluid potential bank' between a ,fluid potential highland' (500,2500 m) to the north and west, and a ,fluid potential basin' (100,500 m) to the south and east. A ,potential island' rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200,1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ,plumes' or ,ridges' may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island-like or ridge-like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression. [source] Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western TurkeyGEOLOGICAL JOURNAL, Issue 5 2005Fuat Erkül Abstract Western Turkey has been dominated by N,S extension since the Early Miocene. The timing and cause of this N,S extension and related basin formation have been the subject of much debate, but new data from the Bigadiç borate basin provide insights that may solve this controversy. The basin is located in the Bornova Flysch Zone, which is thought to have formed as a major NE-trending transform zone during Late Cretaceous-Palaeocene collisional Tethyan orogenesis and later reactivated as a transfer zone of weakness, and which separates two orogenic domains having different structural evolutions. Volcanism in the Bigadiç area is characterized by two rock units that are separated by an angular unconformity. These are: (1) the Kocaiskan volcanites that gives K/Ar ages of 23,Ma, and (2) the Bigadiç volcano-sedimentary succession that yields ages of 20.6 to 17.8,Ma. Both units are unconformably overlain by Upper Miocene-Pliocene continental deposits. The Kocaiskan volcanites are related to the first episode of volcanic activity and comprise thick volcanogenic sedimentary rocks derived from subaerial andesitic intrusions, domes, lava flows and pyroclastic rocks. The second episode of volcanic activity, represented by basaltic to rhyolitic lavas and pyroclastic rocks, accompanied lacustrine,evaporitic sedimentation. Dacitic to rhyolitic volcanic rocks, called the S,nd,rg, volcanites, comprise NE-trending intrusions producing lava flows, ignimbrites, ash-fall deposits and associated volcanogenic sedimentary rocks. Other NE-trending olivine basaltic (Gölcük basalt) and trachyandesitic (Kay,rlar volcanites) intrusions and lava flows were synchronously emplaced into the lacustrine sediments. The intrusions typically display peperitic rocks along their contacts with the sedimentary rocks. It is important to note that the Gölcük basalt described here is the first recorded Early Miocene alkali basalt in western Turkey. The oldest volcanic episode occurred in the NE-trending zone when the region was still experiencing N,S compression. The angular unconformity between the two volcanic episodes marks an abrupt transition from N,S collision-related convergence to N,S extension related to retreat of the Aegean subduction zone to the south along an extensional detachment. Thrust faults with top-to-the-north sense of shear and a series of anticlines and synclines with subvertical NE-striking axial planes observed in the Bigadiç volcano-sedimentary succession suggest that NW,SE compression was reactivated following sedimentation. Geochemical data from the Bigadiç area also support the validity of the extensional regime, which was characterized by a bimodal volcanism related to extrusion of coeval alkaline and calc-alkaline volcanic rocks during the second volcanic episode. The formation of alkaline volcanic rocks dated as 19.7,±,0.4,Ma can be related directly to the onset of the N,S extensional regime in western Turkey. Copyright © 2005 John Wiley & Sons, Ltd. [source] Thrusting and Exhumation Processes of a Bounding Mountain Belt: Constraints from Sediment Provenance Analysis of the Hefei BasinACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2001LIU Shaofeng Abstract Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage. [source] |