Rock Magnetism (rock + magnetism)

Distribution by Scientific Domains


Selected Abstracts


CHARACTERIZING THE SEDIMENTARY HISTORY OF CAVE DEPOSITS, USING ARCHAEOMAGNETISM AND ROCK MAGNETISM, ATAPUERCA (NORTHERN SPAIN)

ARCHAEOMETRY, Issue 5 2010
J. M. PARÉS
We use a combination of rock magnetism (anisotropy of magnetic susceptibility, AMS) and magnetic polarity to characterize cave deposits and as a proxy for sedimentary fabric. In three localities at the Atapuerca archaeological site (Galeria, Gran Dolina and Sala de los Cíclopes), magnetic foliation (Kmax/Kint) is always greater than lineation (Kint/Kmin), consistent with a primary, depositional, sedimentary fabric. Our results, although preliminary, reveal a higher degree of anisotropy in autochtonous deposits compared to allochthonous deposits, possibly indicative of a higher hydrodynamic regime in the former. At two localities the magnetic lineation (Kmax) defines a cluster, which is thought to be antipodal to the palaeocurrent direction. Hence we are able to retrieve palaeoflow directions in deposits that otherwise lack any other sedimentary structure. We conclude that AMS is a powerful tool for determining the hydrodynamic character of depositional environments in cave sediments at the Atapuerca archaeological site. A better understanding of the depositional environment and how sedimentation occurred allows reconstruction of the karst evolution and ultimately a better definition of human interaction with the environment. [source]


Rock magnetism and paleomagnetic stratigraphy of forearc sediments of the Japan Trench, ODP Sites 1150 and 1151

ISLAND ARC, Issue 1 2004
Toshiya Kanamatsu
Abstract Magnetic measurements were carried out to investigate rock magnetic properties and paleomagnetic directions of late and middle Miocene sediments recovered from the land side of the Japan Trench during the Ocean Drilling Program Leg 186. Because the low coercive component in natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization shows that the drilling-induced magnetization is severe in the sections obtained by the advanced hydraulic piston coring method, careful analyses of demagnetization of NRM using the ,demagnetization plane' were carried out to decompose the direction and intensity. Magnetostratigraphic correlation down to the upper Miocene, supplemented by biostratigraphic data, revealed that the sedimentation rates are characterized by drastic changes, with the early Pliocene having the highest rate. This high sedimentation rate is related to the subsidence of the southern deep-sea terrace of the Japan Trench. [source]


Palaeomagnetism, rock magnetism and geochemistry of Jurassic dykes and correlative redbeds, Massachusetts, USA

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000
Suzanne A. McEnroe
Jurassic diabase dykes, sills and sedimentary rocks in central Massachusetts were sampled for palaeomagnetic analysis. The intrusions fall into three of the chemical types for eastern North American diabases: high TiO2 quartz-normative (Holden); low TiO2 quartz-normative (Ware); and high Fe2O3 quartz-normative (Pelham,Loudville). The characteristic magnetizations in the majority of intrusive samples unblock between 550 °C and 580 °C, with Curie temperatures in a discrete interval between 556 °C and 580 °C. The dominant remanence in the diabases is carried by C1 to C3 oxidation-exsolved titanomagnetite occurring as euhedral grains, as fine needles or dust in the matrix, as devitrifed glass, and as fine magnetite-ilmenite-silicate symplectite. In some dykes, titanomagnetite was further modified by deuteric oxidation during post-magmatic cooling, creating titanomaghematite and/or a granulation of the magnetite. Palaeopoles for the three diabase groups are: Holden, 60.1°N, 80.5°E, A95 = 4.1°; Ware, 73.5°N, 85.8°E, A95 = 3.9°; and Pelham,Loudville, 65.3°N, 95.6°E, A95 = 4.1°. These data are combined with samples from two stratigraphic sections through the Early Jurassic part of the Sugarloaf Formation in the Deerfield Basin representing both fine-grained mudstones and coarser arkoses. These haematite-dominated rocks reveal several components of magnetization, a steep recent field direction, an intermediate secondary diagenetic overprint direction in both mudstones and arkoses, and a high-temperature shallow primary direction found only in the mudstones. Palaeopoles for the Sugarloaf Formation are: mudstones, 57.7°N, 81.3°E, A95 = 9.1°; and arkoses, 75.1°N, 131.6°E, A95 = 5.9°. Based on the new palaeomagnetic data reported here, the North American plate in the Middle Jurassic was at higher palaeolatitudes than indicated by the present North American apparent polar wander path. [source]


CHARACTERIZING THE SEDIMENTARY HISTORY OF CAVE DEPOSITS, USING ARCHAEOMAGNETISM AND ROCK MAGNETISM, ATAPUERCA (NORTHERN SPAIN)

ARCHAEOMETRY, Issue 5 2010
J. M. PARÉS
We use a combination of rock magnetism (anisotropy of magnetic susceptibility, AMS) and magnetic polarity to characterize cave deposits and as a proxy for sedimentary fabric. In three localities at the Atapuerca archaeological site (Galeria, Gran Dolina and Sala de los Cíclopes), magnetic foliation (Kmax/Kint) is always greater than lineation (Kint/Kmin), consistent with a primary, depositional, sedimentary fabric. Our results, although preliminary, reveal a higher degree of anisotropy in autochtonous deposits compared to allochthonous deposits, possibly indicative of a higher hydrodynamic regime in the former. At two localities the magnetic lineation (Kmax) defines a cluster, which is thought to be antipodal to the palaeocurrent direction. Hence we are able to retrieve palaeoflow directions in deposits that otherwise lack any other sedimentary structure. We conclude that AMS is a powerful tool for determining the hydrodynamic character of depositional environments in cave sediments at the Atapuerca archaeological site. A better understanding of the depositional environment and how sedimentation occurred allows reconstruction of the karst evolution and ultimately a better definition of human interaction with the environment. [source]