Rotational Molding (rotational + molding)

Distribution by Scientific Domains


Selected Abstracts


Control of rotational molding using adaptive fuzzy systems

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2005
D. I. Abu-Al-Nadi
Abstract Rotational molding is a method for manufacturing hollow plastic parts. In the work reported here, adaptive fuzzy logic techniques have been used to relate the machine oven temperature to other manipulated parameters of the process. The objective is to design a reliable control system for the rotational molding process. An adaptive fuzzy network was developed to correlate changes in oven temperature to changes in the opening of the control valve on the fuel system. The network parameters were optimized using real-valued genetic algorithms. This network gave good results when its performance was compared with experimental data from a commercial rotational molding machine. The network was successfully utilized to design a control system, which works well in regard to set point tracking and load rejection. © 2005 Wiley Periodicals, Inc. Adv Polym Techn 24: 266,277, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20047 [source]


Rotational molding of two-layered polyethylene foams

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2001
Shih-Jung Liu
Rotational molding of polyethylene foams has increasingly become an important process in industry because of its resultant thicker walls, low sound transfer, high stiffness, and good thermal insulation. This report assesses the rotomoldability of two-layer polyethylene foamed parts. The polymeric material used in this study was linear low-density polyethylene and the foaming material was an endothemic chemical blowing agent. Two different molding methods, by powder and by pellet, were used to mold the multilayer foamed parts. Rotational molding experiments were carried out in a laboratory scale uniaxial machine, capable of measuring internal mold temperature in the cycle. Characterization of molded part properties was performed after molding. Optical microscopy was also employed to determine the bubble distribution in foamed parts. The final goal of this study was to investigate how the blowing agent and processing conditions can influence the process of rotational molding and the final product quality. It was found that the rotational molding of two-layer polyethylene foams produced parts of better impact properties, as well as fine outside surfaces. In addition, rotational molding of foamed parts by pellets saves the cost of powder grinding, but is counteracted by uneven inner surfaces. © 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 108,115, 2001 [source]


Rotational molding cycle time reduction through surface enhanced molds: Part A,Theoretical study

POLYMER ENGINEERING & SCIENCE, Issue 9 2007
M.Z. Abdullah
Rotational molding has been regarded as a plastic molding method with great potential. The process offers virtually stress-free products having no weld lines or material wastage, and utilizes relatively inexpensive molds. Yet its widespread growth is hindered due to long production cycle times, which are limited by the time required to heat up and cool down the mold and the product. To address this issue, efforts have been made to enhance heat transfer to and from molds, ultimately reducing cycle times. The application of extended and rough surfaces to molds is investigated here. The aim of this study is to predict reductions in cycle time due to the enhancement of mold surfaces (i.e. roughness-enhanced and pin-enhanced molds). By utilizing a combination of heat transfer correlations, numerical analysis, and an existing rotational molding process simulation, cycle time predictions were made. The average predicted cycle time reductions were ,21 and 32% for the roughness-enhanced and pin-enhanced molds considered, under a variety of conditions. POLYM. ENG. SCI., 47:1406,1419, 2007. © 2007 Society of Plastics Engineers [source]


Control of rotational molding using adaptive fuzzy systems

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2005
D. I. Abu-Al-Nadi
Abstract Rotational molding is a method for manufacturing hollow plastic parts. In the work reported here, adaptive fuzzy logic techniques have been used to relate the machine oven temperature to other manipulated parameters of the process. The objective is to design a reliable control system for the rotational molding process. An adaptive fuzzy network was developed to correlate changes in oven temperature to changes in the opening of the control valve on the fuel system. The network parameters were optimized using real-valued genetic algorithms. This network gave good results when its performance was compared with experimental data from a commercial rotational molding machine. The network was successfully utilized to design a control system, which works well in regard to set point tracking and load rejection. © 2005 Wiley Periodicals, Inc. Adv Polym Techn 24: 266,277, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20047 [source]


Simulation of heat transfer during rotational molding

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2003
A. Greco
Abstract In rotational molding, polymer powders are subjected to heating, melting, cooling, and subsequent solidification in biaxially rotating molds. Heat transfer phenomena during rotational molding are significantly affected by the presence of endothermic and exothermic transitions. In this paper instead of using the traditional moving interface method, a new approach is presented which is applicable to semicrystalline materials like linear low-density polyethylene. Melting is described by a statistical model and crystallization by a kinetic model. The model parameters are determined from differential scanning calorimetry measurements. The one-dimensional unsteady heat conduction equation is solved by a finite difference method. The numerical predictions are in good agreement with experimental data. The overall heat transfer model can be used for process optimization purposes. © 2003 Wiley Periodicals, Inc. Adv Polym Techn 22: 271,279, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.10055 [source]


Rotational molding of two-layered polyethylene foams

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2001
Shih-Jung Liu
Rotational molding of polyethylene foams has increasingly become an important process in industry because of its resultant thicker walls, low sound transfer, high stiffness, and good thermal insulation. This report assesses the rotomoldability of two-layer polyethylene foamed parts. The polymeric material used in this study was linear low-density polyethylene and the foaming material was an endothemic chemical blowing agent. Two different molding methods, by powder and by pellet, were used to mold the multilayer foamed parts. Rotational molding experiments were carried out in a laboratory scale uniaxial machine, capable of measuring internal mold temperature in the cycle. Characterization of molded part properties was performed after molding. Optical microscopy was also employed to determine the bubble distribution in foamed parts. The final goal of this study was to investigate how the blowing agent and processing conditions can influence the process of rotational molding and the final product quality. It was found that the rotational molding of two-layer polyethylene foams produced parts of better impact properties, as well as fine outside surfaces. In addition, rotational molding of foamed parts by pellets saves the cost of powder grinding, but is counteracted by uneven inner surfaces. © 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 108,115, 2001 [source]


Rotationally molded polyethylene: Structural characterization by x-ray and microhardness measurements

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2001
Maria Clara Cramez
Rotationally molded polyethylene (PE) blended in two ways (turbo blending and extrusion) with nucleating and nonnucleating pigments is structurally characterized by wide- and small-angle x-ray scattering (WAXS and SAXS, respectively), DSC and microhardness measurements. Morphological observations are performed by polarized light microscopy. The melting temperature and the degree of crystallinity (from both DSC and WAXS) remain essentially constant regardless of sample preparation and type of pigment. The same holds for the crystal sizes from WAXS and the lamella thickness from SAXS. Only the values of microhardness depend on the type of pigment, increasing about 10% when a nucleating type is used. The almost constant values of these properties, contrasting to the spherulitic morphology, are explained by the fact that the processing conditions in rotational molding are very favorable for crystallization. As a consequence, optimal crystalline structure is achieved, which masks significantly the effect of pigments and blending conditions on the crystallization behavior of polyethylene. © 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 116,124, 2001 [source]


Studying and increasing light stability of rotomolding grade of polyethylene

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
E. Feyz
Abstract This article covers the state-of-the-art light stabilizer for rotational molding and the influence of synergistic effects between light and thermal stabilizers, which improve physical and mechanical properties. Different formulations of polyethylene (PE) with light stabilizer, thermal stabilizer, and acid scavenger have been produced in twin-screw extruder. To study the light stability, sheets that produced by injection-molding machine have been put in weather-ometer instrument for 1000 h. After and before that, physical and mechanical properties have been evaluated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


The rotational molding of a thermotropic liquid crystalline polymer

POLYMER ENGINEERING & SCIENCE, Issue 3 2005
Eric Scribben
Thermotropic liquid crystalline polymers (TLCPs) exhibit a number of mechanical and physical properties such as excellent chemical resistance, low permeability, low coefficient of thermal expansion, high tensile strength and modulus, and good impact resistance, which make them desirable as a rotationally molded storage vessel. However, there are no reports in the technical literature of the successful rotational molding of TLCPs. In this article, conditions are identified that lead to the successful rotational molding of a TLCP, Vectra B 950. First, a technique was developed to produce particles suitable for rotational molding because TLCPs cannot be ground into a free-flowing powder. Second, because the viscosity at low shear rates can be detrimental to the sintering process, coalescence experiments with isolated particles were carried out to determine the thermal and environmental conditions at which sintering should occur. These conditions were then applied to static sintering experiments to determine whether coalescence and densification of the bulk powder would occur. Finally, the powders were successfully rotationally molded into tubular structures in a single axis, lab-scale device. The density of the molded structure was essentially equivalent to the material density and the tensile strength and modulus were approximately 18 MPa and 2 GPa, respectively. POLYM. ENG. SCI., 45:410,423, 2005. © 2005 Society of Plastics Engineers [source]


Processing characteristics and mechanical properties of metallocene catalyzed linear low-density polyethylene foams for rotational molding

POLYMER ENGINEERING & SCIENCE, Issue 4 2004
E. Archer
The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a Ziegler-Natta catalyzed foam and that foam density is by far the most influential factor over mechanical properties of foam. Polym. Eng. Sci. 44:638,647, 2004. © 2004 Society of Plastics Engineers. [source]