Rotational Flow (rotational + flow)

Distribution by Scientific Domains


Selected Abstracts


Dual-asymmetry electrokinetic flow focusing for pre-concentration and analysis of catecholamines in CE electrochemical nanochannels

ELECTROPHORESIS, Issue 14 2009
Ren-Guei Wu
Abstract In this research, a technique incorporating dual-asymmetry electrokinetic flow (DAEKF) was applied to a nanoCE electrochemical device for the pre-concentration and detection of catecholamines. The DAEKF was constructed by first generating a ,-potential difference between the top and bottom walls, which had been pre-treated with O2 and H2O surface plasma, respectively, yielding a 2-D gradient shear flow across the channel depth. The shear flow was then exposed to a varying ,-potential along the downstream direction by control of the field-effect in order to cause downward rotational flow in the channel. By this mechanism, almost all of the samples were effectively brought down to the electrode surface for analysis. Simulations were carried out to reveal the mechanism of concentration caused by the DAEKF, and the results reasonably describe our experiment findings. This DAEKF technique was applied to a glass/glass CE electrochemical nanochip for the analysis of catecholamines. The optimum detection limit was determined to be 1.25 and 3.3,nM of dopamine and catechol, respectively. A detection limit at the zeptomole level for dopamine can be obtained in this device, which is close to the level released by a single neuron cell in vitro. [source]


On the dynamics of a spherical scaffold in rotating bioreactors

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2003
L. E. S. Ramirez
Abstract We analyze the dynamics of a spherical scaffold in rotating bioreactors (or clinostats). The idealized clinostat environment consists of a purely rotational flow that is perpendicular to a gravitational field. We confirm through a detailed analytical study that lift effects considerably alter the position of the equilibrium point reached by the scaffolds in the (vertical) direction collinear to the gravitational field. This result holds for small particle and shear Reynolds numbers. Our analysis shows that the inertial lift effect is negligible in the horizontal direction. We show that for all rotations of practical interest, and for the range of particle Reynolds number smaller than unity, the vertical coordinate of the equilibrium point is strongly affected by consideration of lift effects. For light (heavy) particles, inclusion of lift in the formation forces the equilibrium position to be below (above) the horizontal plane that contains the axis of rotation. The equilibrium point for light particles is stable and therefore is observable experimentally. The equilibrium point for heavy particles is unstable. We also estimate the stress level applied to the scaffold and derive an algebraic expression that indicates that the stress level acting on the scaffold decreases with increasing shear Reynolds number. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 382,389, 2003. [source]


Regimes of Multiple Emulsions of W1/O/W2 and O1/W/O2 Type in the Continuous Couette-Taylor Flow Contactor

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 1 2010
E. Dluska
Abstract The flow regimes of multiple emulsions in the continuous Couette-Taylor flow (CTF) contactor and characterization of the dispersion state are reported. The proposed method of multiple emulsion preparation is a one-step procedure on the contrary to the classical two-step procedure. The effect of operating parameters in the CTF contactor on multiple emulsion appearance, structure (drop size and packing), and rheological behavior is discussed. The key factors affecting multiple emulsion preparation in the CTF apparatus were the phases ratio, the rotational flow, and an annular gap width. The influence of an axial flow was more significant in the range of small rotational rates. The operating conditions were optimized to find the best characteristic multiple emulsions (largest interfacial area). The paper presents the same exemplary data of using W1/O/W2 emulsions as emulsion liquid membranes (ELMs) in the extraction process and O1/W/O2 for control active agent (drug) release. [source]


Critical properties and stability of stationary solutions in multitransonic pseudo-Schwarzschild accretion

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
Soumini Chaudhury
ABSTRACT For inviscid, rotational accretion flows, both isothermal and polytropic, a simple dynamical system analysis of the critical points has given a very accurate mathematical scheme to understand the nature of these points, for any pseudo-potential by which the flow may be driven on to a Schwarzschild black hole. This allows us for a complete classification of the critical points for a wide range of flow parameters, and shows that the only possible critical points for this kind of flow are saddle points and centre-type points. A restrictive upper bound on the angular momentum of critical solutions has been established. A time-dependent perturbative study reveals that the form of the perturbation equation, for both isothermal and polytropic flows, is invariant under the choice of any particular pseudo-potential. Under generically true outer boundary conditions, the inviscid flow has been shown to be stable under an adiabatic and radially propagating perturbation. The perturbation equation has also served the dual purpose of enabling and understanding the acoustic geometry for inviscid and rotational flows. [source]


Error analysis of the L2 least-squares finite element method for incompressible inviscid rotational flows,

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 6 2004
Chiung-Chiou Tsai
Abstract In this article we analyze the L2 least-squares finite element approximations to the incompressible inviscid rotational flow problem, which is recast into the velocity-vorticity-pressure formulation. The least-squares functional is defined in terms of the sum of the squared L2 norms of the residual equations over a suitable product function space. We first derive a coercivity type a priori estimate for the first-order system problem that will play the crucial role in the error analysis. We then show that the method exhibits an optimal rate of convergence in the H1 norm for velocity and pressure and a suboptimal rate of convergence in the L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004 [source]


An analytical model for the rapid intensification of tropical cyclones

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 642 2009
Chanh Q. Kieu
Abstract The nonlinearity and complexity of the primitive equations have been key obstacles to our understanding of tropical cyclones (TCs), particularly in relation to the dynamical processes leading to their rapid intensification. In this study, an axisymmetric model, in which all nonlinear terms in the horizontal momentum equations are retained, is used to examine analytically the effects of organized deep convection on TC rapid intensification. By prescribing a vertical profile of the vertical motion with exponential growth in the core region, a class of exact time-dependent solutions for the primary circulations of TCs are obtained. The analytical solutions are shown to capture well many observed dynamical structures in both the core and outer regions and the rapid growth of TCs in terms of maximum winds and central pressure drops. The analytical solutions reveal that (1) the rotational flows in the inner-core region grow double-exponentially, and the central pressure drops occur at rates much faster than the rotational growth; (2) the amplification rates of the primary circulations differ profoundly from those of the secondary circulations; (3) the rotational flows tend to grow from the bottom upwards with the fastest growth occurring at the lowest levels; and (4) the TC growth rates depend critically on the vertical structure of tangential flows, with a faster rate for a lower-level peak rotation. The nonlinear dynamics are shown to play an important role in the rapid growth of TCs. It is demonstrated that the analytical solutions can also be used to construct dynamically consistent vortices for the initialization of TC models. Limitations and possible improvements of the analytical model are also discussed. Copyright © 2009 Royal Meteorological Society [source]