Root Turnover (root + turnover)

Distribution by Scientific Domains

Kinds of Root Turnover

  • fine root turnover


  • Selected Abstracts


    Estimating Fine Root Turnover in Tropical Forests along an Elevational Transect using Minirhizotrons

    BIOTROPICA, Issue 5 2008
    Sophie Graefe
    ABSTRACT Growth and death of fine roots represent an important carbon sink in forests. Our understanding of the patterns of fine root turnover is limited, in particular in tropical forests, despite its acknowledged importance in the global carbon cycle. We used the minirhizotron technique for studying the changes in fine root longevity and turnover along a 2000-m-elevational transect in the tropical mountain forests of South Ecuador. Fine root growth and loss rates were monitored during a 5-mo period at intervals of four weeks with each 10 minirhizotron tubes in three stands at 1050, 1890, and 3060 m asl. Average root loss rate decreased from 1.07 to 0.72 g/g/yr from 1050 to 1890 m, indicating an increase in mean root longevity with increasing elevation. However average root loss rate increased again toward the uppermost stand at 3060 m (1.30 g/g/yr). Thus, root longevity increased from lower montane to mid-montane elevation as would be expected from an effect of low temperature on root turnover, but it decreased further upslope despite colder temperatures. We suggest that adverse soil conditions may reduce root longevity at high elevations in South Ecuador, and are thus additional factors besides temperature that control root dynamics in tropical mountain forests. [source]


    Linking the global carbon cycle to individual metabolism

    FUNCTIONAL ECOLOGY, Issue 2 2005
    A. P. ALLEN
    Summary 1We present a model that yields ecosystem-level predictions of the flux, storage and turnover of carbon in three important pools (autotrophs, decomposers, labile soil C) based on the constraints of body size and temperature on individual metabolic rate. 2The model predicts a 10 000-fold increase in C turnover rates moving from tree- to phytoplankton-dominated ecosystems due to the size dependence of photosynthetic rates. 3The model predicts a 16-fold increase in rates controlled by respiration (e.g. decomposition, turnover of labile soil C and microbial biomass) over the temperature range 0,30 °C due to the temperature dependence of ATP synthesis in respiratory complexes. 4The model predicts only a fourfold increase in rates controlled by photosynthesis (e.g. net primary production, litter fall, fine root turnover) over the temperature range 0,30 °C due to the temperature dependence of Rubisco carboxylation in chloroplasts. 5The difference between the temperature dependence of respiration and photosynthesis yields quantitative predictions for distinct phenomena that include acclimation of plant respiration, geographic gradients in labile C storage, and differences between the short- and long-term temperature dependence of whole-ecosystem CO2 flux. 6These four sets of model predictions were tested using global compilations of data on C flux, storage and turnover in ecosystems. 7Results support the hypothesis that the combined effects of body size and temperature on individual metabolic rate impose important constraints on the global C cycle. The model thus provides a synthetic, mechanistic framework for linking global biogeochemical cycles to cellular-, individual- and community-level processes. [source]


    Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling

    GLOBAL CHANGE BIOLOGY, Issue 4 2010
    WENMING BAI
    Abstract Fine root production and turnover play important roles in regulating carbon (C) cycling in terrestrial ecosystems. In order to examine effects of climate change on root production and turnover, a field experiment with increased temperature and precipitation had been conducted in a semiarid temperate steppe in northern China since April 2005. Experimental warming decreased annual root production, mortality, and mean standing crop by 10.3%, 12.1%, 7.0%, respectively, while root turnover was not affected in 2006 and 2007 by the warming. Annual root production and turnover was 5.9% and 10.3% greater in the elevated than ambient precipitation plots. Changes in root production and mortality in response to increased temperature and precipitation could be largely attributed to the changes in gross ecosystem productivity (GEP) and belowground/aboveground C allocation. There were significant interactive effects of warming and increased precipitation on root productivity, mortality, and standing crop. Experimental warming had positive and negative effects on the three root variables (root production, mortality, standing crop) under ambient and increased precipitation, respectively. Increased precipitation stimulated and suppressed the three root variables in the unwarmed and warmed subplots, respectively. The positive dependence of soil respiration and ecosystem respiration upon root productivity and mortality highlights the important role of root dynamics in ecosystem C cycling. The nonadditive effects of increased temperature and precipitation on root productivity, mortality, and standing crop observed in this study are critical for model projections of climate,ecosystem feedbacks. These findings indicate that carbon allocation is a focal point for future research and that results from single factor experiments should be treated with caution because of factor interactions. [source]


    Root production and demography in a california annual grassland under elevated atmospheric carbon dioxide

    GLOBAL CHANGE BIOLOGY, Issue 9 2002
    Paul A. T. Higgins
    Abstract This study examined root production and turnover in a California grassland during the third year of a long-term experiment with ambient (LO) and twice-ambient atmospheric CO2 (HI), using harvests, ingrowth cores, and minirhizotrons. Based on one-time harvest data, root biomass was 32% greater in the HI treatment, comparable to the stimulation of aboveground production during the study year. However, the 30,70% increase in photosynthesis under elevated CO2 for the dominant species in our system is considerably larger than the combined increase in above and belowground biomass. One possible explanation is, increased root turnover, which could be a sink for the additional fixed carbon. Cumulative root production in ingrowth cores from both treatments harvested at four dates was 2,3 times that in the single harvested cores, suggesting substantial root turnover within the growing season. Minirhizotron data confirmed this result, demonstrating that production and mortality occurred simultaneously through much of the season. As a result, cumulative root production was 54%, 47% and 44% greater than peak standing root length for the no chamber (X), LO, and HI plots, respectively. Elevated CO2, however, had little effect on rates of turnover (i.e. rates of turnover were equal in the LO and HI plots throughout most of the year) and cumulative root production was unaffected by treatment. Elevated CO2 increased monthly production of new root length (59%) only at the end of the season (April,June) when root growth had largely ceased in the LO plots but continued in the HI plots. This end-of-season increase in production coincided with an 18% greater soil moisture content in the HI plots previously described. Total standing root length was not affected by CO2 treatment. Root mortality was unaffected by elevated CO2 in all months except April, in which plants grown in the HI plots had higher mortality rates. Together, these results demonstrate that root turnover is considerable in the grassland community and easily missed by destructive soil coring. However, increased fine root turnover under elevated CO2 is apparently not a major sink for extra photosynthate in this system. [source]


    Root dynamics and global change: seeking an ecosystem perspective

    NEW PHYTOLOGIST, Issue 1 2000
    RICHARD J. NORBY
    Changes in the production and turnover of roots in forests and grasslands in response to rising atmospheric CO2 concentrations, elevated temperatures, altered precipitation, or nitrogen deposition could be a key link between plant responses and longer-term changes in soil organic matter and ecosystem carbon balance. Here we summarize the experimental observations, ideas, and new hypotheses developed in this area in the rest of this volume. Three central questions are posed. Do elevated atmospheric CO2, nitrogen deposition, and climatic change alter the dynamics of root production and mortality? What are the consequences of root responses to plant physiological processes? What are the implications of root dynamics to soil microbial communities and the fate of carbon in soil? Ecosystem-level observations of root production and mortality in response to global change parameters are just starting to emerge. The challenge to root biologists is to overcome the profound methodological and analytical problems and assemble a more comprehensive data set with sufficient ancillary data that differences between ecosystems can be explained. The assemblage of information reported herein on global patterns of root turnover, basic root biology that controls responses to environmental variables, and new observations of root and associated microbial responses to atmospheric and climatic change helps to sharpen our questions and stimulate new research approaches. New hypotheses have been developed to explain why responses of root turnover might differ in contrasting systems, how carbon allocation to roots is controlled, and how species differences in root chemistry might explain the ultimate fate of carbon in soil. These hypotheses and the enthusiasm for pursuing them are based on the firm belief that a deeper understanding of root dynamics is critical to describing the integrated response of ecosystems to global change. [source]


    Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints

    PLANT CELL & ENVIRONMENT, Issue 3 2000
    F. Magnani
    ABSTRACT The decline in above-ground net primary productivity (Pa) that is usually observed in forest stands has been variously attributed to respiration, nutrient or hydraulic limitations. A novel model is proposed to explain the phenomenon and the co-occurring changes in the balance between foliage, conducting sapwood and fine roots. The model is based on the hypothesis that a functional homeostasis in water transport is maintained irrespective of age: hydraulic resistances through the plant must be finely tuned to transpiration rates so as to avoid extremely negative water potentials that could result in diffuse xylem embolism and foliage dieback, in agreement with experimental evidence. As the plant grows taller, allocation is predicted to shift from foliage to transport tissues, most notably to fine roots. Higher respiration and fine root turnover would result in the observed decline in Pa. The predictions of the model have been compared with experimental data from a chronosequence of Pinus sylvestris stands. The observed reduction in Pa is conveniently explained by concurrent modifications in leaf area index and plant structure. Changes in allometry and shoot hydraulic conductance with age are successfully predicted by the principle of functional homeostasis. [source]


    Estimating Fine Root Turnover in Tropical Forests along an Elevational Transect using Minirhizotrons

    BIOTROPICA, Issue 5 2008
    Sophie Graefe
    ABSTRACT Growth and death of fine roots represent an important carbon sink in forests. Our understanding of the patterns of fine root turnover is limited, in particular in tropical forests, despite its acknowledged importance in the global carbon cycle. We used the minirhizotron technique for studying the changes in fine root longevity and turnover along a 2000-m-elevational transect in the tropical mountain forests of South Ecuador. Fine root growth and loss rates were monitored during a 5-mo period at intervals of four weeks with each 10 minirhizotron tubes in three stands at 1050, 1890, and 3060 m asl. Average root loss rate decreased from 1.07 to 0.72 g/g/yr from 1050 to 1890 m, indicating an increase in mean root longevity with increasing elevation. However average root loss rate increased again toward the uppermost stand at 3060 m (1.30 g/g/yr). Thus, root longevity increased from lower montane to mid-montane elevation as would be expected from an effect of low temperature on root turnover, but it decreased further upslope despite colder temperatures. We suggest that adverse soil conditions may reduce root longevity at high elevations in South Ecuador, and are thus additional factors besides temperature that control root dynamics in tropical mountain forests. [source]