Home About us Contact | |||
Root Mass (root + mass)
Kinds of Root Mass Selected AbstractsEffects of wet meadow riparian vegetation on streambank erosion.EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2002Abstract We measured the effect of wet meadow vegetation on the bank strength and failure mechanics of a meandering montane meadow stream, the South Fork of the Kern River at Monache Meadow, in California's Sierra Nevada. Streambanks colonized by ,wet' graminoid meadow vegetation were on average five times stronger than those colonized by ,dry' xeric meadow and scrub vegetation. Our measurements show that strength is correlated with vegetation density indicators, including stem counts, standing biomass per unit area, and the ratio of root mass to soil mass. Rushes appear better than sedges at stabilizing coarse bar surfaces, while sedges are far more effective at stabilizing actively eroding cut banks. Wet meadow floodplain vegetation creates a composite cut bank configuration (a cohesive layer overlying cohesionless materials) that erodes via cantilever failure. Field measurements and a geotechnical model of cantilever stability show that by increasing bank strength, wet meadow vegetation increases the thickness, width, and cohesiveness of a bank cantilever, which, in turn, increases the amount of time required to undermine, detach, and remove bank failure blocks. At Monache Meadow, it takes approximately four years to produce and remove a 1 m wide wet meadow bank block. Wet meadow vegetation limits bank migration rates by increasing bank strength, altering bank failure modes, and reducing bank failure frequency. Copyright © 2002 John Wiley & Sons, Ltd. [source] Response of soil surface CO2 flux in a boreal forest to ecosystem warmingGLOBAL CHANGE BIOLOGY, Issue 4 2008DUSTIN R. BRONSON Abstract Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (,5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3-m-diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ,5 °C above control ambient air temperature allowing for the testing of soil-only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil-only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil-only vs. soil+air warming) can affect the rate of decomposition. [source] Competitive effects of grasses and woody plants in mixed-grass prairieJOURNAL OF ECOLOGY, Issue 4 2001Duane A. Peltzer Summary 1,Variation in the competitive ability of plant species may determine their persistence and abundance in communities. We quantified the competitive effects of grasses and woody plants in native mixed-grass prairie on the performance of transplant species and on resources. 2,We separated the effects of grasses, shrubs and intact vegetation containing both grasses and shrubs by manipulating the natural vegetation using selective herbicides to create four neighbourhood treatments: no neighbours (NN), no shrubs (NS), no grasses (NG) and all neighbours (AN). Treatments were applied to 2 × 2 m experimental plots located in either grass- or shrub-dominated habitats. The effects of grasses and shrubs on resource availability (light, soil moisture, soil available nitrogen) and on the growth of transplants of Bouteloua gracilis, a perennial tussock grass, and Elaeagnus commutata, a common shrub, were measured over two growing seasons. 3,Resource availability was two- to fivefold higher in no neighbour (NN) plots than in vegetated plots (NS, NG, AN) with grasses and shrubs having similar effects. Light penetration declined linearly with increasing grass or shrub biomass, to a minimum of about 30% incident light at 500 g m,2 shoot mass. Soil resources did not decline with increasing neighbour shoot or root mass for either grasses or shrubs, suggesting that the presence of neighbours was more important than their abundance. 4,Transplant growth was significantly suppressed by the presence of neighbours, but not by increasing neighbour shoot or root biomass, except for a linear decline in Bouteloua growth with increasing neighbour shoot mass in plots containing only shrubs. Competition intensity, calculated as the reduction in transplant growth by neighbours, was similar in both grass- and shrub-dominated habitats for transplants of Bouteloua, but was less intense in shrub-dominated habitats for the shrub Elaeagnus. Variation in the persistence and abundance of plants in communities may therefore be more strongly controlled by variation in the competitive effects exerted by neighbours than by differences in competitive response ability. [source] CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forestNEW PHYTOLOGIST, Issue 3 2008Colleen M. Iversen Summary ,,Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. ,,Here, the effect of elevated [CO2] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO2 -enriched sweetgum (Liquidambar styraciflua) plantation. ,,CO2 enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m,2 of extra C and 9 g m,2 of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. ,,Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil. [source] Effects of defoliation intensity on soil food-web properties in an experimental grassland communityOIKOS, Issue 2 2001Juha Mikola We established a greenhouse experiment based on replicated mini-ecosystems to evaluate the effects of defoliation intensity on soil food-web properties in grasslands. Plant communities, composed of white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and plantain (Plantago lanceolata) with well-established root and shoot systems, were subjected to five defoliation intensity treatments: no trimming (defoliation intensity 0, or DI 0), and trimming of all plant material to 35 cm (DI 1), 25 cm (DI 2), 15 cm (DI 3) and 10 cm (DI 4) above soil surface every second week for 14 weeks. Intensification of defoliation reduced shoot production and standing shoot and root mass of plant communities but increased their root to shoot ratio. Soil microbial activity and biomass decreased with intensification of defoliation. Concentrations of NO3,N in soil steadily increased with intensifying defoliation, whereas NH4,N concentrations did not vary between treatments. Numbers of microbi-detritivorous enchytraeids, bacterial-feeding rotifers and bacterial-feeding nematodes steadily increased with intensifying defoliation, while the abundance of fungal-feeding nematodes was significantly enhanced only in DI 3 and DI 4 relative to DI 0. The abundance of herbivorous nematodes per unit soil mass was lower in DI 3 and DI 4 than in DI 0, DI 1 and DI 2, but when calculated per unit root mass, their abundance tended to increase with defoliation intensity. The abundance of omnivorous and predatory nematodes appeared to be highest in the most intensely defoliated systems. The ratio of abundance of fungal-feeding nematodes to that of bacterial-feeding nematodes was not significantly affected by defoliation intensity. The results infer that defoliation intensity may significantly alter the structure of soil food webs in grasslands, and that defoliation per se is able to induce patterns observed in grazing studies in the field. The results did not support hypotheses that defoliation per se would cause a shift between the bacterial-based and fungal-based energy channels in the decomposer food web, or that herbivore and detritivore densities in soil would be highest under intermediate defoliation. Furthermore, our data for microbes and microbial feeders implies that the effects of defoliation intensity on soil food-web structure may depend on the duration of defoliation and are therefore likely to be dynamic rather than constant in nature. [source] Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flowPLANT CELL & ENVIRONMENT, Issue 10 2006H. J. GONG ABSTRACT Sodium chloride reduces the growth of rice seedlings, which accumulate excessive concentrations of sodium and chloride ions in their leaves. In this paper, we describe how silicon decreases transpirational bypass flow and ion concentrations in the xylem sap in rice (Oryza sativa L.) seedlings growing under NaCl stress. Salt (50 mM NaCl) reduced the growth of shoots and roots: adding silicate (3 mM) to the saline culture solution improved the growth of the shoots, but not roots. The improvement of shoot growth in the presence of silicate was correlated with reduced sodium concentration in the shoot. The net transport rate of Na from the root to shoot (expressed per unit of root mass) was also decreased by added silicate. There was, however, no effect of silicate on the net transport of potassium. Furthermore, in salt-stressed plants, silicate did not decrease the transpiration, and even increased it in seedlings pre-treated with silicate for 7 d prior to salt treatment, indicating that the reduction of sodium uptake by silicate was not simply through a reduction in volume flow from root to shoot. Experiments using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS), an apoplastic tracer, showed that silicate dramatically decreased transpirational bypass flow in rice (from about 4.2 to 0.8%), while the apparent sodium concentration in the xylem, which was estimated indirectly from the flux data, decreased from 6.2 to 2.8 mM. Direct measurements of the concentration of sodium in xylem sap sampled using Philaenus spumarius confirmed that the apparent reduction was not a consequence of sodium recycling. X-ray microanalysis showed that silicon was deposited in the outer part of the root and in the endodermis, being more obvious in the latter than in the former. The results suggest that silicon deposition in the exodermis and endodermis reduced sodium uptake in rice (Oryza sativa L.) seedlings under NaCl stress through a reduction in apoplastic transport across the root. [source] Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.)PLANT CELL & ENVIRONMENT, Issue 8 2002C. D. Campbell Abstract Atmospheric [CO2] affects photosynthesis and therefore should affect the supply of carbon to roots. To evaluate interactions between carbon supply and nutrient acquisition, the [CO2] effects on root growth, proteoid root formation and phosphorus (P) uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically at 200, 410 and 750 µmol mol,1 CO2, under sufficient (0·25 mm P) and deficient (0·69 µm P) phosphorus. Plant size increased with increasing [CO2] only at high P. Both P deficiency and increasing [CO2] increased the production of proteoid clusters; the increase in response to increased [CO2] was proportionally greater from low to ambient [CO2] than from ambient to high. The activity of phosphoenol pyruvate carboxylase in the proteoid root, the exudation of organic acids from the roots, and the specific uptake of P increased with P deficiency, but were unaffected by [CO2]. Increasing [CO2] from Pleistocene levels to those predicted for the next century increased plant size and allocation to proteoid roots, but did not change the specific P uptake capacity per unit root mass. Hence, rising [CO2] should promote nutrient uptake by allowing lupins to mine greater volumes of soil. [source] Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen lossPLANT CELL & ENVIRONMENT, Issue 6 2001M. P. Mcdonald Abstract Nine species from the tribe Triticeae , three crop, three pasture and three ,wild' wetland species , were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8,5·4-fold greater, and in the stagnant solution 1·2,2·8-fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4,3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging-tolerant species Echinochloa crus-galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected. [source] Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree coverAUSTRAL ECOLOGY, Issue 4 2010BARNEY S. KGOPE Abstract Atmospheric CO2 has more than doubled since the last glacial maximum (LGM) and could double again within this century, largely due to anthropogenic activity. It has been suggested that low [CO2] contributed to reduced tree cover in savanna and grassland biomes at LGM, and that increasing [CO2] over the last century promoted increases in woody plants in these ecosystems over the past few decades. Despite the implications of this idea for understanding global carbon cycle dynamics and key global role of the savanna biome, there are still very few experimental studies quantifying the effects of CO2 on tree growth and demography in savannas and grasslands. In this paper we present photosynthetic, growth and carbon allocation responses of African savanna trees (Acacia karroo and Acacia nilotica) and a C4 grass, Themeda triandra, exposed to a gradient of CO2 concentrations from 180 (typical of LGM) to 1000 µmol mol,1 in open-top chambers in a glasshouse as a first empirical test of this idea. Photosynthesis, total stem length, total stem diameter, shoot dry weight and root dry weight of the acacias increased significantly across the CO2 gradient, saturating at higher CO2 concentrations. After clipping to simulate fire, plants showed an even greater response in total stem length, total stem diameter and shoot dry weight, signalling the importance of re-sprouting following disturbances such as fire or herbivory in savanna systems. Root starch (per unit root mass and total root starch per plant) increased steeply along the CO2 gradient, explaining the re-sprouting response. In contrast to the strong response of tree seedlings to the CO2 gradient, grass productivity showed little variation, even at low CO2 concentrations. These results suggest that CO2 has significant direct effects on tree recruitment in grassy ecosystems, influencing the ability of trees to recover from fire damage and herbivory. Fire and herbivore regimes that were effective in controlling tree increases in grassy ecosystems could thus be much less effective in a CO2 -rich world, but field-based tests are needed to confirm this suggestion. [source] Fine Root Distribution in a Lower Montane Rain Forest of PanamaBIOTROPICA, Issue 3 2009Dirk Hölscher ABSTRACT In a Panamanian lower montane rain forest we: (1) analyzed the vertical and horizontal distribution of fine roots; and (2) assessed the relationship of fine root mass to thickness of the soil organic layer, soil pH, and soil-extractable nitrogen. The soil in the study area has developed on volcanic ash deposits and was classified as Hapludand. In randomly distributed samples, the median fine root mass (biomass and necromass, diam , 2 mm) to a depth of 100 cm mineral soil was 544 g/m2, 41 percent of which was found in the organic layer. Fine root mass was approximately twice as high in the vicinity of stems of the tree species Oreomunnea mexicana (1069 g/m2) and the palm species Colpothrinax aphanopetala (1169 g/m2) and was associated with thick organic layers. The median thickness of the soil organic layer in a larger random sample (N= 64) was 8 cm with a considerable variation (interquartile range: 7 cm). In these samples, the density of fine root biomass was correlated with the concentration of extractable nitrogen (r= 0.33, P= 0.011), and on an areal basis, fine root biomass in the organic layer increased with increasing thickness of the organic layer (r= 0.63, P < 0.001) and decreasing pHKCl (r=,0.33, P < 0.01). Fine root biomass in the upper mineral soil did not show significant correlations with any of the studied parameters. RESUMEN En un bosque panameño bajo montano tropical (1) analizamos la distribución horizontal y vertical de las raíces finas, y (2) evaluamos la relación de la masa de las raíces finas con el espesor de la capa de suelo orgánico, pH del suelo, y nitrógeno extraíble del suelo. El suelo del área de estudio se ha desarrollado en depósitos de ceniza volcánica y fue clasificado como Hapludand. En muestras distribuidas aleatoriamente, la media de la masa de raíces finas (biomasa y masa necrosada, diámetro , 2 mm) a una profundidad de 100 cm del suelo mineral fue 544 g/m2, 41 por ciento de las cuales fueron encontradas en suelo orgánico. La masa de raíces finas fue aproximadamente el doble en la vecindad entre los pies de especies de árboles Oreomunnea mexicana (1069 g/m2) y especies de palmera Colpothrinax aphanopetala (1169 g/m2) y fue asociada con el espesor de capa orgánica. El espesor mediano de la capa de suelo orgánico en una amplia muestra aleatoria (N= 64) fue 8 cm con una considerable variación (intervalo entre cuartilas: 7 cm). En estas muestras, la densidad de raíces finas fue correlacionada con la concentración de nitrógeno extraíble (r= 0.33, P= 0.011), y en base al área, la biomasa de raíces finas en la capa orgánica aumentó con el incremento del espesor de la capa orgánica (r= 0.63, P < 0.001) y decrecimiento del pHKCl (r=,0.33, P < 0.01). La biomasa de raíces finas en el suelo mineral superior no mostró ninguna significante correlación con los parámetros estudiados. [source] Size and Structure of Fine Root Systems in Old-growth and Secondary Tropical Montane Forests (Costa Rica)BIOTROPICA, Issue 2 2003Dietrich Hertel ABSTRACT The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10,15 years old, ESF), a mid-successional forest (40 years old, MSP), and a nearby undisturbed old-growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old-growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old-growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0,10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old,growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear. [source] |