Home About us Contact | |||
Richness Data (richness + data)
Selected AbstractsNew York's nature: a review of the status and trends in species richness across the metropolitan regionDIVERSITY AND DISTRIBUTIONS, Issue 1 2009Linda M. Puth ABSTRACT Aim, The world's population is urbanizing, yet relatively little is known about the ecology of urban areas. As the largest metropolitan area in the USA, New York City is an ideal location to study the effects of urbanization. Here, we aim to produce a better understanding of the state of the research for species richness of flora and fauna across the New York metropolitan region. Location, New York metropolitan region, USA. Methods, We conducted a review of the published and grey literature, in which we targeted studies of species richness, and categorized each study by habitat, location and taxonomic group. Results, We found 79 studies reporting location-specific species richness data, resulting in 261 location-taxonomic group records. Of these, 26 records had data from multiple time periods; 17 showed decreases in species richness, six reported increases and three showed stable species richness. Of these 26 records, most declines were attributed to anthropogenic causes, such as habitat loss/degradation and invasive species, while most increases reflected recovery from major habitat loss or increases in exotic species. Overall, most records (84) were terrestrial, followed by those in freshwater (72) and mixed habitats (61). When parsed by taxonomic group, the most commonly studied groups were plants (76) and mammals (48). Main conclusions, In general, we discovered fewer studies than expected reporting species richness, especially studies reporting species richness for more than one point in time. Most studies that did contain data over time reported declines in species richness, while several studies reporting increasing or stable species richness reflected increases in exotic species. This survey provides a crucial first step in establishing baseline ecological knowledge for the New York metropolitan region that should help prioritize areas for protection, research and development. Furthermore, this research provides insights into the impacts of urbanization across the USA and beyond and should help establish similar frameworks for ecological understanding for other metropolitan regions throughout the world. [source] River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?FRESHWATER BIOLOGY, Issue 2010MARGARET A. PALMER Summary 1. Stream ecosystems are increasingly impacted by multiple stressors that lead to a loss of sensitive species and an overall reduction in diversity. A dominant paradigm in ecological restoration is that increasing habitat heterogeneity (HH) promotes restoration of biodiversity. This paradigm is reflected in stream restoration projects through the common practice of re-configuring channels to add meanders and adding physical structures such as boulders and artificial riffles to restore biodiversity by enhancing structural heterogeneity. 2. To evaluate the validity of this paradigm, we completed an extensive evaluation of published studies that have quantitatively examined the reach-scale response of invertebrate species richness to restoration actions that increased channel complexity/HH. We also evaluated studies that used manipulative or correlative approaches to test for a relationship between physical heterogeneity and invertebrate diversity in streams that were not in need of restoration. 3. We found habitat and macroinvertebrate data for 78 independent stream or river restoration projects described by 18 different author groups in which invertebrate taxa richness data in response to the restoration treatment were available. Most projects were successful in enhancing physical HH; however, only two showed statistically significant increases in biodiversity rendering them more similar to reference reaches or sites. 4. Studies manipulating structural complexity in otherwise healthy streams were generally small in scale and less than half showed a significant positive relationship with invertebrate diversity. Only one-third of the studies that attempted to correlate biodiversity to existing levels of in-stream heterogeneity found a positive relationship. 5. Across all the studies we evaluated, there is no evidence that HH was the primary factor controlling stream invertebrate diversity, particularly in a restoration context. The findings indicate that physical heterogeneity should not be the driving force in selecting restoration approaches for most degraded waterways. Evidence suggests that much more must be done to restore streams impacted by multiple stressors than simply re-configuring channels and enhancing structural complexity with meanders, boulders, wood, or other structures. 6. Thematic implications: as integrators of all activities on the land, streams are sensitive to a host of stressors including impacts from urbanisation, agriculture, deforestation, invasive species, flow regulation, water extractions and mining. The impacts of these individually or in combination typically lead to a decrease in biodiversity because of reduced water quality, biologically unsuitable flow regimes, dispersal barriers, altered inputs of organic matter or sunlight, degraded habitat, etc. Despite the complexity of these stressors, a large number of stream restoration projects focus primarily on physical channel characteristics. We show that this is not a wise investment if ecological recovery is the goal. Managers should critically diagnose the stressors impacting an impaired stream and invest resources first in repairing those problems most likely to limit restoration. [source] Local,regional boundary shifts in oribatid mite (Acari: Oribatida) communities: species,area relationships in arboreal habitat islands of a coastal temperate rain forest, Vancouver Island, CanadaJOURNAL OF BIOGEOGRAPHY, Issue 9 2007Zoë Lindo Abstract Aim, This study investigates the species,area relationship (SAR) for oribatid mite communities of isolated suspended soil habitats, and compares the shape and slope of the SAR with a nested data set collected over three spatial scales (core, patch and tree level). We investigate whether scale dependence is exhibited in the nested sampling design, use multivariate regression models to elucidate factors affecting richness and abundance patterns, and ask whether the community composition of oribatid mites changes in suspended soil patches of different sizes. Location, Walbran Valley, Vancouver Island, Canada. Methods, A total of 216 core samples were collected from 72 small, medium and large isolated suspended soil habitats in six western redcedar trees in June 2005. The relationship between oribatid species richness and habitat volume was modelled for suspended soil habitat isolates (type 3) and a nested sampling design (type 1) over multiple spatial scales. Nonlinear estimation parameterized linear, power and Weibull function regression models for both SAR designs, and these were assessed for best fit using R2 and Akaike's information criteria (,AIC) values. Factors affecting oribatid mite species richness and standardized abundance (number per g dry weight) were analysed by anova and linear regression models. Results, Sixty-seven species of oribatid mites were identified from 9064 adult specimens. Surface area and moisture content of suspended soils contributed to the variation in species richness, while overall oribatid mite abundance was explained by moisture and depth. A power-law function best described the isolate SAR (S = 3.97 × A0.12, R2 = 0.247, F1,70 = 22.450, P < 0.001), although linear and Weibull functions were also valid models. Oribatid mite species richness in nested samples closely fitted a power-law model (S = 1.96 × A0.39, R2 = 0.854, F1,18 = 2693.6, P < 0.001). The nested SAR constructed over spatial scales of core, patch and tree levels proved to be scale-independent. Main conclusions, Unique microhabitats provided by well developed suspended soil accumulations are a habitat template responsible for the diversity of canopy oribatid mites. Species,area relationships of isolate vs. nested species richness data differed in the rate of accumulation of species with increased area. We suggest that colonization history, stability of suspended soil environments, and structural habitat complexity at local and regional scales are major determinants of arboreal oribatid mite species richness. [source] Global patterns of plant diversity and floristic knowledgeJOURNAL OF BIOGEOGRAPHY, Issue 7 2005Gerold Kier Abstract Aims, We present the first global map of vascular plant species richness by ecoregion and compare these results with the published literature on global priorities for plant conservation. In so doing, we assess the state of floristic knowledge across ecoregions as described in floras, checklists, and other published documents and pinpoint geographical gaps in our understanding of the global vascular plant flora. Finally, we explore the relationships between plant species richness by ecoregion and our knowledge of the flora, and between plant richness and the human footprint , a spatially explicit measure of the loss and degradation of natural habitats and ecosystems as a result of human activities. Location, Global. Methods, Richness estimates for the 867 terrestrial ecoregions of the world were derived from published richness data of c. 1800 geographical units. We applied one of four methods to assess richness, depending on data quality. These included collation and interpretation of published data, use of species,area curves to extrapolate richness, use of taxon-based data, and estimates derived from other ecoregions within the same biome. Results, The highest estimate of plant species richness is in the Borneo lowlands ecoregion (10,000 species) followed by nine ecoregions located in Central and South America with , 8000 species; all are found within the Tropical and Subtropical Moist Broadleaf Forests biome. Among the 51 ecoregions with , 5000 species, only five are located in temperate regions. For 43% of the 867 ecoregions, data quality was considered good or moderate. Among biomes, adequate data are especially lacking for flooded grasslands and flooded savannas. We found a significant correlation between species richness and data quality for only a few biomes, and, in all of these cases, our results indicated that species-rich ecoregions are better studied than those poor in vascular plants. Similarly, only in a few biomes did we find significant correlations between species richness and the human footprint, all of which were positive. Main conclusions, The work presented here sets the stage for comparisons of degree of concordance of plant species richness with plant endemism and vertebrate species richness: important analyses for a comprehensive global biodiversity strategy. We suggest: (1) that current global plant conservation strategies be reviewed to check if they cover the most outstanding examples of regions from each of the world's major biomes, even if these examples are species-poor compared with other biomes; (2) that flooded grasslands and flooded savannas should become a global priority in collecting and compiling richness data for vascular plants; and (3) that future studies which rely upon species,area calculations do not use a uniform parameter value but instead use values derived separately for subregions. [source] |