River Sediments (river + sediment)

Distribution by Scientific Domains


Selected Abstracts


The Choice of Standardisation Reveals a Significant Influence on the Dynamics of Bacterial Abundance in Newly Deposited River Sediments

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3-4 2003
Andreas H. Farnleitner
Abstract After a high water event of the River Danube in April 1994, bacterial cell numbers were determined in newly formed deposits in a backwater near Hainburg (Lower Austria) within a time course of 140 days. This data set shows that expressing bacterial numbers per fresh sediment volume, per sediment dry mass, or per pore-water fluid volume, respectively, yield significantly different results and ecological conlusions. These findings refer particularly to intra-study and time-course comparisons as presented in our case. Bacterial cell numbers expressed per gram sediment dry mass revealed statistically significant differences between the beginning and the end of the study, whereas expressed per cm3 of fresh sediment or fluid volume of sediment pore water, no statistical difference could be detected. It is argued that these differences were caused by physical sediment compaction and mineralisation processes over the considered time-course. Such mechanisms may simulate biological activity if some basic sediment parameters are neglected and thus standardisation has to be done with caution for the particular situation being observed. [source]


Bioavailability and biodegradation of nonylphenol in sediment determined with chemical and bioanalysis,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2008
Jasperien de Weert
Abstract The surfactant nonylphenol (NP) is an endocrine-disrupting compound that is widely spread throughout the environment. Although environmental risk assessments are based on total NP concentrations, only the bioavailable fraction posses an environmental risk. The present study describes the bioavailability and biodegradability of NP over time in contaminated river sediment of a tributary of the Ebro River in Spain. The bioavailable fraction was collected with Tenax TA® beads, and biodegradation was determined in aerobic batch experiments. The presence of NP was analyzed chemically using gas chromatography-mass spectrometry and indirectly as estrogenic potency using an in vitro reporter gene assay (ER, - luc assay). Of the total extractable NP in the sediment, 95% ± 1.5% (mean ± standard error) desorbed quickly into the water phase. By aerobic biodegradation, the total extractable NP concentration and the estrogenic activity were reduced by 97% ± 0.5% and 94% ± 2%, respectively. The easily biodegradable fraction equals the potential bioavailable fraction. Only 43 to 86% of the estrogenic activity in the total extractable fraction, as detected in the ER, - luc assay, could be explained by the present NP concentration. This indicates that other estrogenic compounds were present and that their bioavailability and aerobic degradation were similar to that of NP. Therefore, we propose to use NP as an indicator compound to monitor estrogenicity of this Ebro River sediment. To what extent this conclusion holds for other river sediments depends on the composition of the contaminants and/or the nature of these sediments and requires further testing. [source]


Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: Bioavailability, biodegradability, and toxicity issues

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Henry H. Tabak
Abstract The widespread contamination by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes. This research studied a chronically PAH-contaminated estuarine sediment from the East River (ER; NY, USA) characterized by high concentrations of PAHs (,4,190 ppm), sulfide, and metals and a marine sediment from New York/New Jersey Harbor (NY/NJH; USA) with only trace quantities of PAHs (0.1,0.6 ppm). The focus was to examine the relationship between bioavailability of PAHs and their biological removal in a slurry system. Freshwater and marine sediment toxicity tests were conducted to measure baseline toxicity of both sediments to amphipods, aquatic worms, fathead and sheepshead minnow larvae, and a vascular plant; to determine the cause of toxicity; and to evaluate the effectiveness of the biotreatment strategies in reducing toxicity. Results showed the ER sediment was acutely toxic to all freshwater and marine organisms tested and that the toxicity was mainly caused by sulfide, PAHs, and metals present in the sediment. In spite of the high toxicity, most of the PAH compounds showed significant degradation in the aerobic sediment/water slurry system if the initial high oxygen demand due to the high sulfide content of the sediment was overcome. The removal of PAHs by biodegradation was closely related to their desorbed amount in 90% isopropanol solution during 24 h of contact, while the desorption of model PAH compounds from freshly spiked NY/NJH sediment did not describe the bioavailability of PAHs in the East River sediment well. The research improves our understanding of bioavailability as a controlling factor in bioremediation of PAHs and the potential of aerobic biodegradation for PAH removal and ecotoxicity reduction. [source]


Sedimentological, modal analysis and geochemical studies of desert and coastal dunes, Altar Desert, NW Mexico

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2007
J. J. Kasper-Zubillaga
Abstract Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz-rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz-rich sediments. The Sr values are also linked to the presence of Ca-bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz-rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain-size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Polychlorinated naphthalenes and other dioxin-like compounds in Elbe River sediments

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2008
Werner Brack
Abstract Contamination of Elbe River (Germany) sediments with dioxin-like toxicants was investigated following the 500-year flood (flood that statistically occurs once in 500 years) of 2002. It was hypothesized that large amounts of particulate matter from river beds and associated dioxin-like toxicants were mobilized and transported during this flood event. The investigation focused on polychlorinated naphthalenes (PCNs) that have not been determined previously in the Elbe River. The in vitro H4IIE- luc assay was used as an overall measure for toxicants capable of binding to the aryl hydrocarbon receptor (AhR). The assay was combined with congener-specific instrumental analyses and fractionation to quantify PCN contributions to total AhR-mediated activity relative to polychlorinated dibenzo- p -dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Penta- to octachloron-aphthalene concentrations of 30 ng/kg dry weight up to 13 ,g/kg dry weight were found in Elbe River sediments downstream of Bitterfeld. Concentrations of penta- to octachloronaphthalenes, however, were only approximately 3 ,g/kg dry weight at a site in the vicinity of Bitterfeld, where a level of approximately 3 mg/kg dry weight was reported before the flood. Also, the congener pattern of PCNs at this site changed after the flood, and PCN patterns reported previously for Bitterfeld and assigned to chlor-alkali electrolysis with graphite electrodes could now be observed at the sites from downstream of Bitterfeld and Magdeburg. Whereas PCDD/Fs dominated the dioxin-like activity in the middle and lower Elbe River, PCNs contributed as much as 10% of the total AhR-mediated activity. The contribution of PCBs was less significant (maximum, 0.2%). Thus, in Elbe River sediments, PCNs should be considered as relevant contaminants and be included in future monitoring and risk assessment programs. [source]


Bioavailability and biodegradation of nonylphenol in sediment determined with chemical and bioanalysis,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2008
Jasperien de Weert
Abstract The surfactant nonylphenol (NP) is an endocrine-disrupting compound that is widely spread throughout the environment. Although environmental risk assessments are based on total NP concentrations, only the bioavailable fraction posses an environmental risk. The present study describes the bioavailability and biodegradability of NP over time in contaminated river sediment of a tributary of the Ebro River in Spain. The bioavailable fraction was collected with Tenax TA® beads, and biodegradation was determined in aerobic batch experiments. The presence of NP was analyzed chemically using gas chromatography-mass spectrometry and indirectly as estrogenic potency using an in vitro reporter gene assay (ER, - luc assay). Of the total extractable NP in the sediment, 95% ± 1.5% (mean ± standard error) desorbed quickly into the water phase. By aerobic biodegradation, the total extractable NP concentration and the estrogenic activity were reduced by 97% ± 0.5% and 94% ± 2%, respectively. The easily biodegradable fraction equals the potential bioavailable fraction. Only 43 to 86% of the estrogenic activity in the total extractable fraction, as detected in the ER, - luc assay, could be explained by the present NP concentration. This indicates that other estrogenic compounds were present and that their bioavailability and aerobic degradation were similar to that of NP. Therefore, we propose to use NP as an indicator compound to monitor estrogenicity of this Ebro River sediment. To what extent this conclusion holds for other river sediments depends on the composition of the contaminants and/or the nature of these sediments and requires further testing. [source]


Reduction of perchlorate in river sediment

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2006
Rupert Simon
Abstract The transformation of perchlorate was investigated in river sediment during laboratory batch and column studies to determine if reduction of perchlorate is a viable pathway in natural sediment without previous exposure to perchlorate. Perchlorate at an initial concentration of 10 ,M was reduced quantitatively to chloride in 3 d after a lag phase of 2 d in sediment slurries amended with lactate. Raising the initial concentration of perchlorate to 1,000 ,M increased the lag phase to 20 d before reduction occurred. At perchlorate concentrations greater than 1,000 ,M, the reduction of perchlorate was not observed within 40 d. We speculate that the high concentration of perchlorate specifically was problematic to the microbes mediating the reduction of perchlorate. High levels of nitrate inhibited the reduction of perchlorate as well. In sediment slurries amended with 870 ,M sodium nitrate, the reduction of perchlorate at an initial concentration of 100 ,M did not occur before day 15 of the experiment, but complete removal of nitrate had occurred by day four. Sediment column studies further demonstrated the dependence of perchlorate reduction on endogenous nitrate levels. [source]


Challenges of gas chromatography,high-resolution time-of-flight mass spectrometry for simultaneous analysis of polybrominated diphenyl ethers and other halogenated persistent organic pollutants in environmental samples

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 7 2005

Abstract The potential of a gas chromatographic method employing high-resolution time-of-flight (TOF) mass spectrometry was evaluated for detection of polybrominated diphenyl ethers (PBDEs) in the environmental matrices represented by fish and river sediment. Two ionisation techniques, viz. electron ionisation (EI) and negative ion chemical ionisation (NICI), the latter with methane as a reagent gas, were used in this study. While the instrumental lowest calibration levels (LCLs) obtained in EI were in the range from 1 to 5 pg, their values ranged between 10 to 250 fg in NICI mode. This enhancement in detectability of target analytes enabled identification/quantification of even minor PBDE congeners, and consequently, improved characterisation of particular sample contamination patterns. In addition, this method allowed estimation of the PCB levels in examined samples. CB 153 was used as a contamination marker in this study. [source]


Transport and distribution of lindane and simazine in a riverine environment: measurements in bed sediments and modelling

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2004
Ian J Allan
Abstract Aquatic sediments often remove hydrophobic contaminants from fresh waters. The subsequent distribution and concentration of contaminants in bed sediments determines their effect on benthic organisms and the risk of re-entry into the water and/or leaching to groundwater. This study examines the transport of simazine and lindane in aquatic bed sediments with the aim of understanding the processes that determine their depth distribution. Experiments in flume channels (water flow of 10 cm s,1) determined the persistence of the compounds in the absence of sediment with (a) de-ionised water and (b) a solution that had been in contact with river sediment. In further experiments with river bed sediments in light and dark conditions, measurements were made of the concentration of the compounds in the overlying water and the development of bacterial/algal biofilms and bioturbation activity. At the end of the experiments, concentrations in sediments and associated pore waters were determined in sections of the sediment at 1 mm resolution down to 5 mm and then at 10 mm resolution to 50 mm depth and these distributions analysed using a sorption,diffusion,degradation model. The fine resolution in the depth profile permitted the detection of a maximum in the concentration of the compounds in the pore water near the surface, whereas concentrations in the sediment increased to a maximum at the surface itself. Experimental distribution coefficients determined from the pore water and sediment concentrations indicated a gradient with depth that was partly explained by an increase in organic matter content and specific surface area of the solids near the interface. The modelling showed that degradation of lindane within the sediment was necessary to explain the concentration profiles, with the optimum agreement between the measured and theoretical profiles obtained with differential degradation in the oxic and anoxic zones. The compounds penetrated to a depth of 40,50 mm over a period of 42 days. Copyright © 2004 Society of Chemical Industry [source]


Late Holocene dispersal and accumulation of terrigenous sediment on Poverty Shelf, New Zealand

BASIN RESEARCH, Issue 2 2009
A. J. Kettner
ABSTRACT We use coupled numerical models (HydroTrend and SedFlux) to investigate the dispersal and accumulation of sediment on Poverty Shelf, North Island, New Zealand, during the past 3 kyr. In this timeframe, we estimate that the Waipaoa River system delivered ,10 Gt of sediment to Poverty Shelf, 5,10% of which was transported to the outer shelf and continental slope. The domain of the two-dimensional model (SedFlux) is representative of a 30 km traverse across the shelf. Comparing the model output with seismic reflection data and a core obtained from the middle shelf shows that, without extensively modifying the governing equations or imposing unrealistic conditions on the model domain, it is possible to replicate the geometry, grain size and accumulation rate of the late Holocene mud deposit. The replicate depositional record responds to naturally and anthropogenically induced vegetation disturbance, as well as to storms forced by long-period climatic events simulated entirely within the model domain. The model output also suggests that long-term fluctuations in the amount and caliber of river sediment discharge, promoted by wholesale changes in the catchment environment, may be translated directly to the shelf depositional record, whereas short-term fluctuations conditioned by event magnitude and frequency are not. Thus on Poverty Shelf, as well as in depocenters on other active continental margins which retain a much smaller proportion of the terrigeneous sediment delivered to them, flood-generated event beds are not commonplace features in the high-resolution sedimentary record. This is because the shelf sedimentary record is influenced more by the energy available to the coastal ocean which helps keep the sediment in suspension and facilitates its dispersal, than by basin hydrometeorology which determines the turbidity and velocity of the river plume. [source]


Modelling detrital cooling-age populations: insights from two Himalayan catchments

BASIN RESEARCH, Issue 3 2003
I. D. Brewer
The distribution of detrital mineral cooling ages in river sediment provides a proxy record for the erosional history of mountain ranges. We have developed a numerical model that predicts detrital mineral age distributions for individual catchments in which particle paths move vertically toward the surface. Despite a restrictive set of assumptions, the model permits theoretical exploration of the effects of thermal structure, erosion rate, and topography on cooling ages. Hypsometry of the source-area catchment is shown to exert a fundamental control on the frequency distribution of bedrock and detrital ages. We illustrate this approach by generating synthetic 40Ar/39Ar muscovite age distributions for two catchments with contrasting erosion rates in central Nepal and then by comparing actual measured cooling-age distributions with the synthetic ones. Monte Carlo sampling is used to assess the mismatch between observed and synthetic age distributions and to explore the dependence of that mismatch on the complexity of the synthetic age signal and on the number of grains analysed. Observed detrital cooling ages are well matched by predicted ages for a more slowly eroding Himalayan catchment. A poorer match for a rapidly eroding catchment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the basin. Such mismatches emphasize the need for more accurate thermal and kinematic models and for sampling strategies that are adapted to catchment-specific geologic and geomorphic conditions. [source]


Bioavailability and biodegradation of nonylphenol in sediment determined with chemical and bioanalysis,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2008
Jasperien de Weert
Abstract The surfactant nonylphenol (NP) is an endocrine-disrupting compound that is widely spread throughout the environment. Although environmental risk assessments are based on total NP concentrations, only the bioavailable fraction posses an environmental risk. The present study describes the bioavailability and biodegradability of NP over time in contaminated river sediment of a tributary of the Ebro River in Spain. The bioavailable fraction was collected with Tenax TA® beads, and biodegradation was determined in aerobic batch experiments. The presence of NP was analyzed chemically using gas chromatography-mass spectrometry and indirectly as estrogenic potency using an in vitro reporter gene assay (ER, - luc assay). Of the total extractable NP in the sediment, 95% ± 1.5% (mean ± standard error) desorbed quickly into the water phase. By aerobic biodegradation, the total extractable NP concentration and the estrogenic activity were reduced by 97% ± 0.5% and 94% ± 2%, respectively. The easily biodegradable fraction equals the potential bioavailable fraction. Only 43 to 86% of the estrogenic activity in the total extractable fraction, as detected in the ER, - luc assay, could be explained by the present NP concentration. This indicates that other estrogenic compounds were present and that their bioavailability and aerobic degradation were similar to that of NP. Therefore, we propose to use NP as an indicator compound to monitor estrogenicity of this Ebro River sediment. To what extent this conclusion holds for other river sediments depends on the composition of the contaminants and/or the nature of these sediments and requires further testing. [source]


Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2008
Dong Li
Abstract This study investigated the occurrence and fate of oxytetracycline (OTC) and its related substances, 4-epi-oxytetracycline (EOTC), ,-apo-oxytetracycline (,-apo-OTC), and ,-apo-oxytetracycline (,-apo-OTC), in a wastewater treatment plant (WWTP) treating OTC production wastewater and a river receiving the effluent from the WWTP using liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). The percent removal of OTC in the WWTP was 38.0 ± 10.5%, and the concentration of OTC was still up to 19.5 ± 2.9 mg/L in the treated outflow. The concentration slightly decreased along the river, from 641 ± 118 ,g/L at site R2 (discharging point) to 377 ± 142 ,g/L at site R4 (,20 km from site R2), which was still higher than the minimal inhibition concentration of OTC reported (,250 ,g/L). On the other hand, the total amount of its related substances in the treated effluent was less than 5% of OTC. Concentrations of ,-apo-OTC and ,-apo-OTC increased along the river, from 5.76 ± 0.63 and 2.08 ± 0.30 ,g/L at site R2 to 11.9 ± 4.9 and 12.0 ± 4.6 ,g/L at R4, respectively, although EOTC decreased from 31.5 ± 3.8 to 12.9 ± 1.1 ,g/L, respectively. The mean concentration of ,-apo-OTC in river sediments was 20.8 ± 7.8 mg/kg, and its ratio to OTC was approximately 0.11, nearly twice the ratio of ,-apo-OTC and EOTC to OTC (0.058 ± 0.014 and 0.061 ± 0.015, respectively). [source]


Monitoring river sediments contaminated predominantly with polyaromatic hydrocarbons by chemical and in vitro bioassay techniques

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2001
Jan Vondrá
Abstract Extracts of sediment samples collected from the Morava River and its tributaries (Czech Republic) were examined for mutagenic, dioxin-like, and estrogenic activities. Moreover, the human leukemic HL-60 cell line was tested as a potential model for the detection of effects of environmental contaminants on cell proliferation and differentiation processes. Analytical data indicate that the sediments were contaminated predominantly with polycyclic aromatic hydrocarbons (PAHs) and phthalate esters. The sums of concentrations of 16 U.S. Environmental Protection Agency priority PAHs ranged from 0.8 to 13.2 ,g/g and those of phthalates reached up to 3,000 ng/g, while only low levels of chlorinated hydrocarbons were found. The main goal of the present study was to determine effects of PAH prevalence on in vitro bioassays, with special emphasis on dioxin-like activity. The dioxin-like activity was tested using a reporter gene assay based on chemical-activated luciferase expression (the CALUX assay). Significant dioxin-like activity (2.6,40.1 ,g/g benzo[a]pyrene equivalents and 5.9,48.2 ng/g 2,3,7,8-tetrachlorodibenzo- p -dioxin equivalents) was detected in all samples, and the results obtained with various exposure times or with both crude and PAH-deprived extracts indicate that the response was probably caused almost exclusively by the presence of high concentrations of PAHs. This corresponds with results of chemical analyses and indicates that various exposure times would allow a discrimination between dioxin-like activities of persistent compounds and easily metabolized aryl hydrocarbon (Ah) receptor inducers. Only sediment extracts containing the highest concentrations of PAHs were mutagenic, as determined by the umu assay. Estrogenic activity was found in several samples (4.75,22.61 pg/g estradiol equivalents) using cells stably transfected with an estrogen-responsive element linked to a luciferase promoter. Noncytotoxic doses of extracts had no effects on HL-60 cell proliferation, while two of the tested crude extracts significantly enhanced their all- trans retinoic acid-induced differentiation. These activities were not associated with phthalate esters and/or PAHs. Our results indicate that cellular and biochemical in vitro assays based on various specific modes of action may yield data complementary to results of mutagenicity tests and that they could be useful in environmental risk assessment. High levels of PAHs are apparently associated with dioxin-like and mutagenic activities rather than with estrogenic activity. [source]


Interactions between fauna and sediment control the breakdown of plant matter in river sediments

FRESHWATER BIOLOGY, Issue 4 2010
SIMON NAVEL
Summary 1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel-based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders. [source]


Determination of Total Organic Carbon Content and ,13C in Carbonate-Rich Detrital Sediments

GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 3 2007
Valier Galy
carbone organique; décarbonatation; solubilisation; sediment; carbonate The determination of total organic carbon content and composition in detrital sediments requires careful removal of their carbonate minerals. In detrital sediments containing large amounts of carbonates, including dolomite, this can only be achieved by liquid acid leaching that may solubilise a significant proportion of the organic carbon. For a set of detrital sediments from the Himalayan system and the Amazon River as well as five geological reference materials, we determined the proportion of organic carbon (Corg) solubilised during acid leaching. This proportion is significant for all analysed sediments and generally tends to increase with the organic carbon content. Compared to other types of sediments analysed, clay fractions extracted from river sediments and bed sediments with very low organic carbon content have high and low proportions of acid soluble Corg respectively. In Himalayan and Amazon river sediments, the proportion of Corg solubilised during acid leaching was relatively constant with average values of 14 and 19 % respectively. Thus, it is possible to correct the Corg content for the dissolved organic carbon content measured after decarbonation. Data presented here show that Corg dissolved during liquid acid leaching must be taken into account. After careful calibration, the method presented here should, therefore, be applied to any carbonate-rich detrital sediment. La détermination de la teneur totale en carbone organique et de sa composition dans des sédiments détritiques requiert leur décarbonatation préalable. l'élimination complète de carbonates tels que la dolomite ne peut être réalisée qu'au moyen d'une attaque avec un acide en phase liquide ce qui peut entrainer la solubilisation d'une partie du carbone organique. Pour un ensemble de sédiments détritiques provenant du système Himalayen et de l'Amazone ainsi que pour cinq matériaux géologiques de référence, nous avons déterminé la proportion de carbone organique (Corg) solubilisé lors de la décarbonatation. Celle-ci est significative pour l'ensemble des sédiments analysés et tend à augmenter avec la teneur en carbone organique. En comparaison avec les autres types de sédiments analysés, les fractions argileuses extraites de sédiments de rivière et les sédiments de fond très pauvres en Corg ont une proportion de Corg soluble dans l'acide respectivement élevée et faible. Dans les sédiments himalayens et amazoniens, la proportion de Corg solubilisé lors de la décarbonatation est plutôt constante avec des valeurs moyennes respectives de 14 et 19%. Nous pouvons donc calculer avec précision la teneur totale en carbone organique à partir de la teneur en Corg déterminée après décarbonatation. Nos données montrent que la solubilisation de Corg lors de la décarbonatation par un acide en solution est importante et doit être prise en compte lors de la détermination de la teneur en carbone organique. Moyennant une calibration minutieuse, la méthode que nous présentons devrait donc être utilisée pour l'analyse de sédiments détritiques riches en carbonates. [source]


Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2004
Ulrich Förstner
Abstract Characteristic dynamic features of sediment-related processes in rivers include dramatic effects of stormwater events on particle transport, rapid and far-reaching effects of sulphide oxidation during resuspension, and biological accumulation and potential release of toxic chemicals. Pollutant mobility is the net result of the stabilizing and mobilizing effects in both hydraulic and chemical fields. In practice, emphasis has to be given to fine-grained sediments and suspended matter as these materials exhibit large surface areas and high sorption capacities. Organic materials are highly reactive. Degradation of organic matter will induce oxygen depletion and might enhance formation of flocs and biofilms. Study of variations of sediment and water chemistry should predominantly include changes of pH and redox conditions, competition of dissolved ions and processes such as complexation by organic substances. Major questions relate to the potential reduction of sorption sites on minerals and degradation of organic carrier materials. All these processes will influence solution/solid equilibrium conditions and have to be studied prior to modelling the overall effects of pollutants on the water body and aquatic ecosystems. With respect to handling and remediation of contaminated river sediments, either in-place or excavated, a chemical and biological characterization of the material, of the (disposal) site and of the long-term processes is crucial. Passive techniques (e.g. in situ stabilization, subaqueous capping) provide economic advantages as there are no operation costs following their installation. However, the success of these ecological and geochemical engineering approaches is mainly based on an in-depth knowledge of the underlying processes. [source]


The physical scale modelling of braided alluvial architecture and estimation of subsurface permeability

BASIN RESEARCH, Issue 3 2002
D. J. Moreton
ABSTRACT The quantitative modelling of fluvial reservoirs, especially in the stages of enhanced oil recovery, requires detailed three-dimensional data at both the scale of the channel belt and within-channel. Although studies from core, analogue outcrop and modern environments may partially meet these needs, they often cannot provide detail on the smaller-scale (i.e. channel-scale) heterogeneity, frequently suffer from limited three-dimensional exposure and cannot be used to examine the influence of different variables on the process,deposit relationship. Physical modelling offers a complementary technique that can address many of these quantitative requirements and holds great future potential for integration with reservoir modelling. Physical modelling provides the potential to upscale results and derive reservoir information on three-dimensional facies geometry, connectivity and permeability. This paper describes the development and use of physical modelling, which employs generic Froude-scaling principles, in an experimental basin that permits aggradation in order to model the morphology and subsurface depositional stratigraphy of coarse-grained braided rivers. An example is presented of a 1:50 scale model based on the braided Ashburton River, Canterbury Plains, New Zealand and the adjacent late Quaternary braided alluvium exposed in the coastal cliffs. Critically, a full, bimodal grain size distribution (20% sand and 80% gravel) was used to replicate the prototype, which allows the realistic reproduction of the surface morphology and importantly permits grain size sorting during deposition. Uncertainties associated with the compression of time, sediment mass balance and the hydrodynamics of the finest particle sizes do not appear to affect the reproducibility of stratigraphy between experimental and natural environments. Sectioning of the preserved sedimentary sequence in the physical model allows quantification of the geometry, shape, spatial distribution and internal sedimentary structure of the coarse- and fine-grained facies. A six-fold facies scheme is proposed for the model braided alluvium and a direct link is established between the grain size distribution and facies type: this allows permeability to be estimated for each facies, which can be mapped onto two-dimensional vertical cross-sections of the preserved stratigraphy. Results demonstrate the dominance of four facies based on permeability that range over three orders of magnitude in hydraulic conductivity. Quantification of such variability, and linkage to both vertical proportion curves for facies distribution and connectivity presents significant advantages over other methodologies and offers great potential for the modelling of heterogeneous braided river sediments at the within channel-belt scale. This paper outlines how physical models may be used to develop high-resolution, geologically-accurate, object-based reservoir simulation models. [source]