River Populations (river + population)

Distribution by Scientific Domains


Selected Abstracts


Premating Avoidance of Inbreeding Absent in Female Guppies (Poecilia reticulata)

ETHOLOGY, Issue 7 2006
Åslaug Viken
The recognition and avoidance of kin during mating can be an important means of reducing the potential for inbreeding depression in offspring. We report here that premating mechanisms to avoid inbreeding, either innate or learnt through juvenile experience, are at best weak in female guppies (Poecilia reticulata). Guppies are small, ovoviviparous, neo-tropical freshwater fish, with a polygamous mating system where males actively court females and females are selective of their mates. In a series of mate-choice experiments, naïve, virgin females of the Quare River population in Trinidad were given a choice between a brother and a non-sib male from the same population. Initially, females were only provided olfactory cues upon which to base their choice and then subsequently both olfactory and visual cues. Despite the females displaying mate choice, we found no evidence of them discriminating between the male types in either experiment. There was thus no indication of inbreeding avoidance, suggesting that experiences after maturation or with mature males (e.g. rare male preference), dispersal and/or post-mating mechanisms may be evolutionarily more important avoidance mechanisms. [source]


POPULATION GENETIC STRUCTURE OF FINLESS PORPOISES, NEOPHOCAENA PHOCAENOIDES, IN CHINESE WATERS, INFERRED FROM MITOCHONDRIAL CONTROL REGION SEQUENCES

MARINE MAMMAL SCIENCE, Issue 2 2002
Guang Yang
Abstract Seven hundred and twenty base pairs (bp) of the mitochondrial control region from 73 finless porpoises, Neophocaena phocaenoides, in Chinese waters were sequenced. Thirteen variable sites were determined and 17 haplotypes were defined. Of these, 5 and 7 were found only in the Yellow Sea population and the South China Sea population, respectively, whereas no specific haplo-type was found in the Yangtze River population. Phylogenetic analyses using NJ and ML algorithm did not divide the haplotypes into monophyletic clades representing recognized geographic populations of finless porpoises in Chinese waters, suggesting the existence of migration and gene flow among populations. Analysis of molecular variance showed the obvious population genetic structure (,st= 0.41, P < 0.05); however, the structure was mainly between either the Yangtze River population or the Yellow Sea population and the South China Sea population. The genetic diversity (nucleotide diversity and haplotypic diversity) of the Yellow Sea population was significantly higher than those of the Yangtze River population and the South China Sea population, suggesting the relatively later divergence of the latter two populations and supporting the Yellow Sea population as the original center of Neophocaena. [source]


Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns

MOLECULAR ECOLOGY, Issue 1 2009
JOSHUA E. BROWN
Abstract The Eurasian round goby Neogobius melanostomus (Apollonia melanostoma) invaded the North American Great Lakes in 1990 through ballast water, spread rapidly, and now is widely distributed and moving through adjacent tributaries. We analyse its genetic diversity and divergence patterns among 25 North American (N = 744) and 22 Eurasian (N = 414) locations using mitochondrial DNA cytochrome b gene sequences and seven nuclear microsatellite loci in order to: (i) identify the invasion's founding source(s), (ii) test for founder effects, (iii) evaluate whether the invasive range is genetically heterogeneous, and (iv) determine whether fringe and central areas differ in genetic diversity. Tests include FST analogues, neighbour-joining trees, haplotype networks, Bayesian assignment, Monmonier barrier analysis, and three-dimensional factorial correspondence analysis. We recovered 13 cytochrome b haplotypes and 232 microsatellite alleles in North America and compared these to variation we previously described across Eurasia. Results show: (i) the southern Dnieper River population was the primary Eurasian donor source for the round goby's invasion of North America, likely supplemented by some alleles from the Dniester and Southern Bug rivers, (ii) the overall invasion has high genetic diversity and experienced no founder effect, (iii) there is significant genetic structuring across North America, and (iv) some expansion areas show reduced numbers of alleles, whereas others appear to reflect secondary colonization. Sampling sites in Lake Huron's Saginaw Bay and Lake Ontario significantly differ from all others, having unique alleles that apparently originated from separate introductions. Substantial genetic variation, multiple founding sources, large number of propagules, and population structure thus likely aided the goby's ecological success. [source]


What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands?

ECOLOGY OF FRESHWATER FISH, Issue 4 2008
F. Morat
Abstract,,, Otoliths preserve a continuous record of the life cycle from the natal through the adult stage. For that reason, the morphological and chemical characteristics of otoliths of two nonnative Salmonids, brown trout (Salmo trutta) and brook charr (Salvelinus fontinalis) from populations on the Kerguelen Islands were compared. Several approaches were used to study the relationships between otolith morphometry, crystal morph and chemical elemental composition. These salmonids sampled in Kerguelen are well differentiated in terms of species through their otolith shape. The results indicate that ecotypes and river populations can be reasonably well differentiated on the basis of otolith shape. The crystallisation study has revealed the presence of a particular form: the vaterite, present at a high rate: 45% of S. fontinalis and 18% from Salmo trutta fario. Moreover, vaterite and aragonite otoliths presented differences in chemical composition. [source]


Genetic restoration of a stocked brown trout Salmo trutta population using microsatellite DNA analysis of historical and contemporary samples

JOURNAL OF APPLIED ECOLOGY, Issue 4 2006
MICHAEL M. HANSEN
Summary 1Gene flow from domesticated to wild populations is a major threat to wild salmonid fish. However, few studies have addressed how populations could be restored after admixture has occurred. We analysed the prospects for restoring the previously intensively stocked brown trout population of the Skjern River, Denmark, by identifying remaining non-admixed individuals to be used for supportive breeding. 2We analysed microsatellite DNA markers in historical (1940,50s) and contemporary (1992,2004) samples from the Skjern River system, from the strain of domesticated trout previously used for stocking, and from the neighbouring Storå River. We analysed admixture proportions to estimate the genetic contribution by domesticated trout. We identified non-admixed trout using assignment tests, and further analysed the possible sources of indigenous trout by estimating contemporary migration among populations. 3Genetic differentiation between the historical Storå and Skjern river populations was low (,ST = 0·004), suggesting considerable gene flow in the past. The contemporary Skjern and Storå river populations and a supportive breeding brood stock were strongly admixed, but some non-admixed individuals nevertheless remained in the wild-caught samples. In addition, two resident populations in isolated tributaries were found to be indigenous. The indigenous anadromous individuals from the Skjern River were unlikely to have been recruited from either the isolated tributary populations or the neighbouring Storå River and were presumably derived from unidentified spawning sites in the river system. 4All but one non-admixed anadromous Skjern River trout were females, which we ascribed to sampling bias. Moreover, all non-admixed fish were late-spawning (January,February) whereas the majority of all trout caught for the study were ripe by November,December. The difference in spawning time could be an important factor delaying complete admixture of domesticated and indigenous trout. 5Synthesis and applications. This study demonstrates the feasibility of restoring populations that have been admixed with exogenous individuals, by identifying non-admixed individuals using genetic markers. However, the results also highlight the problem that numbers of identified non-admixed individuals may be small, necessitating identification of nearby, closely related populations that can be incorporated into breeding programmes. [source]


Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure

MOLECULAR ECOLOGY, Issue 9 2001
D. E. Ruzzante
Abstract We examined polymorphism at seven microsatellite loci in 4023 brown trout (Salmo trutta) collected from 32 tributaries to the Limfjord, Denmark (~200 km) and from two hatcheries used for stocking. Populations differ in their estimated sizes and stocking histories. Mean individual inbreeding coefficients do not differ among locations within rivers. Relatedness varies between sites within rivers indicating varied local dynamics at a very small geographical scale. Relatedness is sometimes lower than expected among an equal number of simulated individuals with randomized genotypes, suggesting structure within locations. Five per cent of the genetic variance is distributed among rivers (FST = 0.049), but in the western, less heavily stocked, area of the Limfjord a higher proportion of the genetic variance is distributed among rivers than among locations within rivers. The reverse is true of the eastern, more heavily stocked, area of the Limfjord. Here, a higher proportion of the genetic variance is distributed among locations within rivers than among rivers. Assignment tests reveal that the majority of trout (mean 77% of all fish) are more probably of local origin than hatchery origin but this proportion varies regionally, with rivers in the western area of the Limfjord showing a relatively high (mean 88%) and those in the eastern area showing a relatively low (mean 72%) proportion of locally assigned trout. These results can be interpreted as reflecting stocking impact. Also, the proportion of locally assigned trout correlates with the populations' stocking histories, with rivers presently subjected to stocking (hatchery trout) showing low (mean ~0.73), and rivers where stocking was discontinued showing high (mean ~0.84) proportions of local fish, probably reflecting lower survival of hatchery than of wild trout. There is evidence for isolation by distance at a large geographical scale when individual river populations are pooled into nine geographical regions but not at a small geographical scale when populations are considered individually. We reject the null hypothesis that stocking has had no impact on population structure but the relatively high proportion of locally assigned trout in populations where stocking with domestic fish no longer takes place suggests limited long-term success of stocking. [source]


Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation

MOLECULAR ECOLOGY, Issue 4 2001
T. L. King
Abstract Atlantic salmon (n = 1682) from 27 anadromous river populations and two nonanadromous strains ranging from south-central Maine, USA to northern Spain were genotyped at 12 microsatellite DNA loci. This suite of moderate to highly polymorphic loci revealed 266 alleles (5,37/locus) range-wide. Statistically significant allelic and genotypic heterogeneity was observed across loci between all but one pairwise comparison. Significant isolation by distance was found within and between North American and European populations, indicating reduced gene flow at all geographical scales examined. North American Atlantic salmon populations had fewer alleles, fewer unique alleles (though at a higher frequency) and a shallower phylogenetic structure than European Atlantic salmon populations. We believe these characteristics result from the differing glacial histories of the two continents, as the North American range of Atlantic salmon was glaciated more recently and more uniformly than the European range. Genotypic assignment tests based on maximum-likelihood provided 100% correct classification to continent of origin and averaged nearly 83% correct classification to province of origin across continents. This multilocus method, which may be enhanced with additional polymorphic loci, provides fishery managers the highest degree of correct assignment to management unit of any technique currently available. [source]