River Management (river + management)

Distribution by Scientific Domains


Selected Abstracts


Justice in River Management: Community Perceptions from the Hunter Valley, New South Wales, Australia

GEOGRAPHICAL RESEARCH, Issue 2 2005
Mick Hillman
Abstract Dealing with differing and sometimes conflicting criteria for priority-setting is an essential part of sustainable natural resource management. However, all too often, these ethical and political considerations are neglected within a planning regime based upon apparently ,objective' biophysical assessment techniques. Input into associated decision-making processes is also frequently restricted to a narrow range of ,stakes' based upon historical and geographic circumstances. This paper reports on the findings of interviews and discussion groups in the Hunter Valley, New South Wales, which aimed to canvass the diversity of perceptions of distributive and procedural justice in river rehabilitation. A range of biophysical and social criteria for setting priorities in rehabilitation work was identified. Participants also had differing ideas on the composition of decision-making bodies and on decision-making processes. The key implications of these findings are that sustainable river management policy needs to openly address differing conceptions of justice and that rehabilitation practice should be holistic, transdisciplinary and concerned with both outcome and process. [source]


Fluvial Geomorphology and River Management

GEOGRAPHICAL RESEARCH, Issue 3 2000
I. Douglas
Australian river landscapes offer many challenges for management. Much Australian river research is novel, but practical concerns have always had an influence on the research agenda. Australia's distinctive contributions to fluvial geomorphology include recognition of the great age of many fluvially eroded landscapes; understanding complex levee, terrace and valley fill sequences; analysing the impacts of rare major floods; interpreting the effects of impoundment, mining and urbanisation; and understanding the great anastomosing inland river systems. River restoration is now a major theme in the literature of river engineering, fluvial geomorphology and landscape design. Great achievements are occurring in geo-ecological river management and engineering. Changing people's thinking is becoming at least as important as gaining new scientific knowledge. The existing understanding needs to be more widely shared and enhanced by greater involvement with Asian countries where river management issues daily affect the lives of millions of people. [source]


Instream Flow Science For Sustainable River Management,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2009
Geoffrey E Petts
Abstract:, Concerns for water resources have inspired research developments to determine the ecological effects of water withdrawals from rivers and flow regulation below dams, and to advance tools for determining the flows required to sustain healthy riverine ecosystems. This paper reviews the advances of this environmental flows science over the past 30 years since the introduction of the Instream Flow Incremental Methodology. Its central component, Physical HABitat SIMulation, has had a global impact, internationalizing the e-flows agenda and promoting new science. A global imperative to set e-flows, including an emerging trend to set standards at the regional scale, has led to developments of hydrological and hydraulic approaches but expert judgment remains a critical element of the complex decision-making process around water allocations. It is widely accepted that river ecosystems are dependent upon the natural variability of flow (the flow regime) that is typical of each hydro-climatic region and upon the range of habitats found within each channel type within each region. But as the sophistication of physical (hydrological and hydraulic) models has advanced emerging biological evidence to support those assumptions has been limited. Empirical studies have been important to validate instream flow recommendations but they have not generated transferable relationships because of the complex nature of biological responses to hydrological change that must be evaluated over decadal time-scales. New models are needed to incorporate our evolving knowledge of climate cycles and morphological sequences of channel development but most importantly we need long-term research involving both physical scientists and biologists to develop new models of population dynamics that will advance the biological basis for 21st Century e-flow science. [source]


Changing Perceptions of Change: The Role of Scientists in Tamarix and River Management

RESTORATION ECOLOGY, Issue 2 2009
Juliet C. Stromberg
Abstract Initially introduced to western United States to provide ecosystem services such as erosion control, Tamarix by the mid-1900s had became vilified as a profligate waster of water. This large shrub continues, today, to be indicted for various presumed environmental and economic costs, and millions of dollars are expended on its eradication. In this review, we examine the role of scientists in driving changes in perceptions of Tamarix from valuable import to vilified invader and (in some instances) back to a productive member of riparian plant communities. Scientists over the years have sustained a negative perception of Tamarix by, among other things, (1) citing outmoded sources; (2) inferring causation from correlative studies; (3) applying conclusions beyond the scope (domain) of the studies; and (4) emphasizing findings that present the species as an extreme or unnatural agent of change. Recent research is challenging the prevailing dogma regarding Tamarix's role in ecosystem function and habitat degradation and many scientists now recommend management shifts from "pest plant" eradication to systemic, process-based restoration. However, prejudice against this and other non-native species persists. To further close the gap between science and management, it is important for scientists to strive to (1) cite sources appropriately; (2) avoid reflexive antiexotic bias; (3) avoid war-based and pestilence-based terminology; (4) heed the levels of certainty and the environmental domain of studies; (5) maintain up-to-date information on educational Web sites; and (6) prior to undertaking restoration or management actions, conduct a thorough and critical review of the literature. [source]


The spatial and temporal patterns of aggradation in a temperate, upland, gravel-bed river

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2009
Emma K. Raven
Abstract Intensive field monitoring of a reach of upland gravel-bed river illustrates the temporal and spatial variability of in-channel sedimentation. Over the six-year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land-use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Spatial variability in the timing, nature and extent of channel response to typical human disturbance along the Upper Hunter River, New South Wales, Australia

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2008
Joanna Hoyle
Abstract Prior to European settlement, the Upper Hunter River near Muswellbrook, New South Wales, was a passively meandering gravel-bed river of moderate sinuosity and relatively uniform channel width. Analyses of floodplain sedimentology, archival records, parish maps and aerial photographs document marked spatial variability in the pattern of channel change since European settlement in the 1820s. Different types, rates and extents of change are reported for seven zones of adjustment along an 8 km study reach. This variable adjustment reflects imposed antecedent controls (buried terrace material and bedrock), which have significantly influenced local variability in river sensitivity to change, as well as contemporary morphodynamics and geomorphic complexity. Local variability in system responses to disturbance has important implications for future river management and rehabilitation. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Climatic influences and anthropogenic stressors: an integrated framework for streamflow management in Mediterranean-climate California, U.S.A.

FRESHWATER BIOLOGY, Issue 2010
THEODORE E. GRANTHAM
Summary 1. In Mediterranean and other water-stressed climates, water management is critical to the conservation of freshwater ecosystems. To secure and maintain water allocations for the environment, integrated water management approaches are needed that consider ecosystem flow requirements, patterns of human water demands and the temporal and spatial dynamics of water availability. 2. Human settlements in Mediterranean climates have constructed water storage and conveyance projects at a scale and level of complexity far exceeding those in other, less seasonal climates. As a result, multiple ecological stressors associated with natural periods of flooding and drying are compounded by anthropogenic impacts resulting from water infrastructure development. 3. Despite substantial investments in freshwater ecosystem conservation, particularly in California, U.S.A., success has been limited because the scales at which river management and restoration are implemented are often discordant with the temporal and spatial scales at which ecosystem processes operate. Often, there is also strong social and political resistance to restricting water allocation to existing consumptive uses for environmental protection purposes. Furthermore, institutions rarely have the capacity to develop and implement integrated management programmes needed for freshwater ecosystem conservation. 4. We propose an integrated framework for streamflow management that explicitly considers the temporal and spatial dynamics of water supply and needs of both human and natural systems. This approach makes it possible to assess the effects of alternative management strategies to human water security and ecosystem conditions and facilitates integrated decision-making by water management institutions. 5. We illustrate the framework by applying a GIS-based hydrologic model in a Mediterranean-climate watershed in Sonoma County, California, U.S.A. The model is designed to assess the hydrologic impacts of multiple water users distributed throughout a stream network. We analyse the effects of vineyard water management on environmental flows to (i) evaluate streamflow impacts from small storage ponds designed to meet human water demands and reduce summer diversions, (ii) prioritise the placement of storage ponds to meet human water needs while optimising environmental flow benefits and (iii) examine the environmental and social consequences of flow management policies designed to regulate the timing of diversions to protect ecosystem functions. 6. Thematic implications: spatially explicit models that represent anthropogenic stressors (e.g. water diversions) and environmental flow needs are required to address persistent and growing threats to freshwater biodiversity. A coupled human,natural system approach to water management is particularly useful in Mediterranean climates, characterised by severe competition for water resources and high spatial and temporal variability in flow regimes. However, lessons learned from our analyses are applicable to other highly seasonal systems and those that are expected to have increased precipitation variability resulting from climate change. [source]


Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams

FRESHWATER BIOLOGY, Issue 1 2007
SYLVAIN DOLÉDEC
Summary 1. Relating processes occurring at a local scale to the natural variability of ecosystems at a larger scale requires the design of predictive models both to orientate stream management and to predict the effects of larger scale disturbances such as climate changes. Our study contributes to this effort by providing detailed models of the hydraulic preferences of 151 invertebrate taxa, mostly identified at the species level. We used an extensive data set comprising 580 invertebrate samples collected using a Surber net from nine sites of second and third order streams during one, two or three surveys at each site. We used nested non-linear mixed models to relate taxon local densities to bed shear stresses estimated from FliesswasserStammTisch hemisphere numbers. 2. An average model by taxon, i.e. independent from surveys, globally explained 25% of the density variations of taxa within surveys. A quadratic relationship existed between the average preferences and the niche breadth of taxa, indicating that taxa preferring extreme hemisphere numbers had a reduced hydraulic niche breadth. A more complete model, where taxa preferences vary across surveys, globally explained 38% of the variation of taxa densities within surveys. Variations in preferences across surveys were weak for taxa preferring extreme hemisphere numbers. 3. There was a significant taxonomic effect on preferences computed from the complete model. By contrast, season, site, average hemisphere number within a survey and average density of taxa within a survey used as covariates did not consistently explain shifts in taxon hydraulic preferences across surveys. 4. The average hydraulic preferences of taxa obtained from the extensive data set were well correlated to those obtained from two additional independent data sets collected in other regions. The consistency of taxon preferences across regions supports the use of regional preference curves for estimating the impact of river management on invertebrate communities. By contrast, the hydraulic niche breadths of taxa computed from the different data sets were not related. [source]


Response of the flora and macroinvertebrate fauna of a chalk stream site to changes in management

FRESHWATER BIOLOGY, Issue 5 2003
J. F. Wright
SUMMARY 1. Temporal changes in a series of habitats and their macroinvertebrate assemblages were examined on a 50-m section of a chalk stream in Berkshire, England between June 1975,79 and June 1997,2001. 2. The site was part of a trout fishery in 1975,79, when river management included instream weed cutting together with control of bankside trees and riparian vegetation. Management ceased in the 1980s and by 1997,2001, the site was heavily shaded by trees and riparian vegetation. 3. The mean area of instream macrophytes decreased by 50% between the first and second sampling period. In contrast, gravel and silt increased and invading marginal vegetation formed a new habitat. 4. Changes in macroinvertebrate family richness between sampling periods were scale dependant. Although there were, on average, significantly more families in individual replicates in 1975,79 than in 1997,2001, total family richness for the site in each year did not differ significantly between sampling periods. 5. Sixty families of macroinvertebrates were recorded during the study, 50 in both sampling periods, 53 in 1975,79 and 57 in 1997,2001. This small increase in site family richness may be due to the invading marginal plants. 6. Total macroinvertebrate abundance was significantly lower in the second sampling period. A major drought in 1976 resulted in significantly higher densities of macroinvertebrates, partly through the exploitation of epiphytic diatoms by chironomid larvae. A drought in 1997 failed to elicit a similar response because of the limited macrophytes and diatoms under heavy shading by trees and marginal vegetation. 7. Significant increases in important shredders and decreases in some scrapers between the early and later sampling years largely reflected changes in available food resources. 8. Whereas macroinvertebrate family richness has been conserved under the recent ,no management' regime, the site is now less attractive as a fishery because of poor access and lower densities of some macroinvertebrates taken by brown trout. [source]


Fluvial Geomorphology and River Management

GEOGRAPHICAL RESEARCH, Issue 3 2000
I. Douglas
Australian river landscapes offer many challenges for management. Much Australian river research is novel, but practical concerns have always had an influence on the research agenda. Australia's distinctive contributions to fluvial geomorphology include recognition of the great age of many fluvially eroded landscapes; understanding complex levee, terrace and valley fill sequences; analysing the impacts of rare major floods; interpreting the effects of impoundment, mining and urbanisation; and understanding the great anastomosing inland river systems. River restoration is now a major theme in the literature of river engineering, fluvial geomorphology and landscape design. Great achievements are occurring in geo-ecological river management and engineering. Changing people's thinking is becoming at least as important as gaining new scientific knowledge. The existing understanding needs to be more widely shared and enhanced by greater involvement with Asian countries where river management issues daily affect the lives of millions of people. [source]


Similarities and differences in the historical development of flood management in the alluvial stretches of the Lower Mississippi Basin and the Rhine Basin,§

IRRIGATION AND DRAINAGE, Issue S1 2006
Dick de Bruin
ingénierie hydraulique fluviale; développement historique des bassins du Rhin et du Mississippi inférieur; plaines alluviales Abstract Although the rivers Rhine and Mississippi cannot be compared as features of nature,the Mississippi River as a feature of nature is much bigger and more impressive than the Rhine,one can still observe striking similarities on flood management in both river basins, in particular in the alluvial flat reaches. But there are also some fundamental differences, not only technically but also institutionally. Since industrialization (around 1800), inland navigation became a major user on both river systems and later flood control started developing more fundamentally. Large intervention works were needed, mainly developed and based on trial and error. In both cases it has led to irreversible effects, which demand continuous attention. For the alluvial stretches in both river basins, a review is given on the most important developments in river engineering over the last two centuries. For both rivers, nautical management and flood control were held in one institutional hand at national/federal level, because both uses/sectors need the creation and regular maintenance of one similar issue: a stable and deep main channel. But the way in which in particular flood management gradually developed institutionally, as an essential part of integrated water management in the alluvial flat lower reaches of both river systems, has diverged. Discussions on financing, priorities, public disclosure, multifunctional aspects, etc. have led in both basins to lengthy procedures and complicated policy making. This paper elaborates on the historic development of fundamentals in river engineering and river management in the alluvial plains of the Rhine Basin and the Lower Mississippi Basin, more in particular focusing on the development of flood protection dikes, and on the stabilization of major channels. Copyright © 2006 John Wiley & Sons, Ltd. Bien que le Rhin et le Mississippi ne puissent pas être comparés en termes physiques,le Mississippi est beaucoup plus grand et impressionnant que le Rhin,on peut pourtant observer des similitudes saisissantes dans la protection contre les inondations des deux bassins, en particulier dans les plaines alluviales. Mais il existe également quelques différences fondamentales, non seulement techniques mais institutionnelles. Depuis les débuts de l'industrialisation (vers 1800), la navigation est devenue un usage très important sur les deux fleuves et la protection contre les inondations à commencer à se mettre en place de façon plus systématique. De grands travaux d'intervention ont été nécessaires, principalement basés sur la règle empirique de l'essai/erreur. Dans les deux cas, ceci a entraîné des effets irréversibles, qui nécessitent une surveillance permanente. Pour les plaines alluviales des deux bassins, l'article passe en revue la plupart des développements de l'ingénierie hydraulique fluviale des deux cent dernières années. Pour les deux fleuves, la gestion de la navigation et la protection contre les inondations ont été regroupées dans une même institution au niveau national/fédéral, parce que les deux usages/secteurs demandaient la création et l'entretien régulier d'une même infrastructure: un canal principal stable et profond. Mais la manière dont la protection contre les inondations s'est progressivement développée sur le plan institutionnel, comme élément essentiel de la gestion intégrée de l'eau dans les plaines alluviales des deux fleuves, s'est différenciée. Des débats sur le financement, les priorités, l'information du public, les aspects multi fonctionnels, etc., ont conduit les deux bassins à mettre en place des procédures lourdes et des prises de décision complexes. Cet article présente le développement historique des principes fondamentaux de l'hydraulique fluviale et de la gestion de fleuve dans les plaines alluviales du bassin du Rhin et du bassin inférieur du Mississippi, en mettant l'accent sur le développement des digues de protection et la stabilisation des canaux principaux. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Spatial patterns of the biological traits of freshwater fish communities in south-west France

JOURNAL OF FISH BIOLOGY, Issue 2 2005
F. Santoul
Spatial patterns in the combinations of biological traits of fish communities were studied in the Garonne River system (57 000 km2, south-west France). Fish species assemblages were recorded at 554 sampling sites, and the biological traits of species were described using a fuzzy-coding method. A co-inertia analysis of species distributions and biological traits identified some spatial patterns of species trait combinations. Fish species richness progressively increased from up- to downstream sections, and the longitudinal patterns of fish assemblages partitioned the river into clear biogeographic areas, such as the brown trout Salmo trutta(headwater streams), the grayling Thymallus thymallus, the barbel Barbus barbus and the bream Abramis brama zones (most downstream sections), which fitted with Huet's well-known zonation for western European rivers. Only a few biological traits, chiefly related to life-history attributes, significantly influenced the observed fish distributions. Fecundity, potential size, maximum age and reproductive factor increased from headwater to plain reaches. As a theoretical framework for assessing and predicting the functional organization of stream fish communities, spatial variations in species traits can be related to habitat conditions, thus providing explicit spatial schemes that may be useful to the design of both scientific studies and river management. [source]


Flood risk analysis for determining optimal flood protection levels in urban river management

JOURNAL OF FLOOD RISK MANAGEMENT, Issue 3 2008
Masaru Morita
Abstract The objective of the paper is to present a specific risk-analysis method for the assessment of optimal flood protection levels in urban flood risk management using intensity,duration,frequency relationships. Risk herein is understood as the product of flood damage potential and its occurrence probability. The risk analysis is based on a geographic information system-based flood damage prediction model to calculate flood damage for design storms with different return periods. Estimation of the monetary damages for these design storms and their return periods is the prerequisite for quantifying flood risk based on an annual risk density curve. The risk-analysis method is applied to determine optimal flood protection levels for the Kanda River basin in Tokyo, Japan. It shows how two cost curves can be used: risk cost reduction curves and capital cost curves. [source]


Understanding ,hot-spot' problems in catchments: the need for scale-sensitive measures and mechanisms to secure effective solutions for river management and conservation

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010
Malcolm Newson
Abstract 1.Regulatory progress in controlling point sources of chemical river pollution has progressively thrown the attention of public policy towards anthropogenic physical impacts, many of which are scaled to the catchment via the runoff/sediment system. At the same time, concern over diffuse chemical pollution has reinforced ,catchment consciousness': land-use and land-management planning and control must be considered to conserve or restore river ecosystem integrity. 2.The scientific, political and legal elements of this scale change are, however, complex and uncertain: ,myths' abound. Landscape-scale consideration of ,pressures' suggests an unequal distribution of regulatory costs and benefits and large uncertainties in the evidence from a ,land-use hydrology' and fluvial geomorphology perspective. 3.,Hydrological connectivity' brings together a number of knowledge themes about catchment spatial organization which facilitate applying mitigation measures to much smaller areas, helping to offset uncertainty and reduce costs. 4.Instead of blanket ,remedies', more practical use is needed of process evidence from hydrology and fluvial geomorphology; this tends to suggest that ,hot-spots' dominate risks and impacts of factors such as leaching, surface flow generation and silt entrainment. 5.Set in a realistic policy framework, from strategic spatial planning to grant-aided best practice, a ,catchment acupuncture' approach to measures provides a cost-effective contribution to improving ecological status and may also increase resilience to the impacts of climate change. 6.The European Union's Water Framework Directive (WFD) encourages ,joined-up thinking' on this issue but it remains to be seen whether spatial scales, structures and concepts already enshrined in the WFD and the relevant UK national policies for land use and nature conservation can be exploited to permit the much-needed practical uptake of this new riparianism. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Integrating ecology with hydromorphology: a priority for river science and management

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2009
I.P. Vaughan
Abstract 1.The assessment of links between ecology and physical habitat has become a major issue in river research and management. Key drivers include concerns about the conservation implications of human modifications (e.g. abstraction, climate change) and the explicit need to understand the ecological importance of hydromorphology as prescribed by the EU's Water Framework Directive. Efforts are focusing on the need to develop ,eco-hydromorphology' at the interface between ecology, hydrology and fluvial geomorphology. Here, the scope of this emerging field is defined, some research and development issues are suggested, and a path for development is sketched out. 2.In the short term, major research priorities are to use existing literature or data better to identify patterns among organisms, ecological functions and river hydromorphological character. Another early priority is to identify model systems or organisms to act as research foci. In the medium term, the investigation of pattern,processes linkages, spatial structuring, scaling relationships and system dynamics will advance mechanistic understanding. The effects of climate change, abstraction and river regulation, eco-hydromorphic resistance/resilience, and responses to environmental disturbances are likely to be management priorities. Large-scale catchment projects, in both rural and urban locations, should be promoted to concentrate collaborative efforts, to attract financial support and to raise the profile of eco-hydromorphology. 3.Eco-hydromorphological expertise is currently fragmented across the main contributory disciplines (ecology, hydrology, geomorphology, flood risk management, civil engineering), potentially restricting research and development. This is paradoxical given the shared vision across these fields for effective river management based on good science with social impact. A range of approaches is advocated to build sufficient, integrated capacity that will deliver science of real management value over the coming decades. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Integrated river basin management in England and Wales: a policy perspective

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2002
G. Mance
Abstract 1.There is now an irresistible momentum for a truly integrated and strategic approach to river basin management. As a consequence, the framework within which individual organizations can carry out their roles and responsibilities in a co-ordinated and sustainable way can be determined. 2.Extreme events such as floods and droughts have severe social and economic consequences. ,Traditional' engineered responses, which take little account of fluvial processes and ecosystem functioning, often exacerbate these problems and can have severe adverse consequences on the environment. 3.Bringing together a range of scientific, technical and engineering disciplines to address catchment management has many advantages. Identifying and implementing innovative solutions that benefit local communities and the environment is the only sustainable way forward for river management. 4.Public understanding of risk assessment and management is vital to the success of an integrated approach. So too is a strategic dimension to inform the town and country planning system and major investment decisions by major utilities and public bodies responsible for water supply, pollution control and flood management. 5.There are major challenges ahead for public utilities, agencies and professional bodies in terms of attracting, retaining and blending together skilled scientific, engineering and technical specialists. These skills need to be complemented by the ability to convey sophisticated information in readily understood language. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Dealing with uncertainty: adaptive approaches to sustainable river management

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2002
M.J. CLARKArticle first published online: 5 AUG 200
Abstract 1.Sustainable river management is the proclaimed aim of many agencies and institutions, but it remains challenging to bring this worthy ideal from the level of political rhetoric to that of practical river management. 2.Amongst the many drivers that already pressure the river manager, from internal institutional goals, through political aspirations to systemic change within the biophysical process system, one common element emerges, that of prevailing uncertainty. 3.Once it has been accepted that conventional science and engineering approaches to uncertainty (risk) minimization may be sub-optimal in a truly holistic (biophysical, socio-economic, political) system, the challenge emerges of developing a more appropriate framework without destroying over-burdened managers and management systems in the process. 4.It is argued that the necessary components are often already in place or under consideration. A linked model is proposed comprising practical measures of sustainability, robust approaches to uncertainty (if necessary, involving attitude change), responsive (adaptive) management frameworks, and an important underpinning of fuzzy decision support. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A geomorphological framework for river characterization and habitat assessment

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2001
J.R. Thomson
Abstract 1.,Methods to assess the physical habitat available to aquatic organisms provide important tools for many aspects of river management, including river health monitoring, determination of river restoration/rehabilitation strategies, setting and evaluating environmental flows and as surrogates for biodiversity assessment. 2.,Procedures used to assess physical habitat need to be ecologically and geomorphologically meaningful, as well as practicable. A conceptual methodological procedure is presented that evaluates and links instream habitat and geomorphology. 3.,The heterogeneity of habitat potential is determined within geomorphic units (such as pools, runs, riffles) by assessing flow hydraulics and substrate character. These two variables are integrated as hydraulic units , patches of uniform flow and substrate. 4.,This methodology forms a logical extension of the River Styles framework that characterizes river form and behaviour at four inter-related scales: catchments, landscape units, River Styles (reaches) and geomorphic units. As geomorphic units constitute the basis to assess aquatic habitat availability, and they form the building blocks of river and floodplain systems, intact reaches of a particular River Style should have similar assemblages of instream and floodplain habitat. 5.,An application of the hydraulic unit procedure is demonstrated in gorge, partly-confined and alluvial River Styles from the Manning catchment in northern New South Wales, Australia. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia

AUSTRAL ECOLOGY, Issue 2 2000
R.T. KINGSFORD
Abstract Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Darns, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah-Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water-birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray-Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983,84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential. [source]


Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia

AUSTRAL ECOLOGY, Issue 2 2000
R.T. Kingsford
Abstract Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Dams, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah-Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water-birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray-Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983,84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential. [source]