Risk Characterization (risk + characterization)

Distribution by Scientific Domains


Selected Abstracts


Principles of risk assessment for determining the safety of chemicals: Recent assessment of residual solvents in drugs and di(2-ethylhexyl) phthalate

CONGENITAL ANOMALIES, Issue 2 2004
Ryuichi Hasegawa
ABSTRACT Risk assessment of chemicals is essential for the estimation of chemical safety, and animal toxicity data are typically used in the evaluation process, which consists of hazard identification, dose,response assessment, exposure assessment, and risk characterization. Hazard identification entails the collection of all available toxicity data and assessment of toxicity endpoints based on findings for repeated dose toxicity, carcinogenicity or genotoxicity and species-specificity. Once a review is compiled, the allowable lifetime exposure level of a chemical is estimated from a dose,response assessment based on several measures. For non-carcinogens and non-genotoxic carcinogens, the no-observed-adverse-effect-level (NOAEL) is divided by uncertainty factors (e.g. with environmental pollutants) or safety factors (e.g. with food additives) to derive a tolerable daily intake (TDI) or acceptable daily intake (ADI), respectively. These factors include interspecies and individual differences, duration of exposure, quality of data, and nature of toxicity such as carcinogenicity or neurotoxicity. For genotoxic carcinogens, low dose extrapolation is accomplished with mathematical modeling (e.g. linearized multistage model) from the point of departure to obtain exposure levels that will be associated with an excess lifetime cancer risk of a certain level. Data for levels of chemicals in food, water and air, are routinely used for exposure assessment. Finally, risk characterization is performed to ensure that the established ,safe' level of exposure exceeds the estimated level of actual exposure. These principles have led to the evaluation of several existing chemicals. To establish a guideline for residual solvents in medicine, the permitted daily exposure (PDE), equivalent to TDI, of N,N-dimethylformamide was derived on the basis of developmental toxicity (malformation) and of N-methylpyrrolidone on the basis of the developmental neurotoxicity. A TDI for di(2-ethylhexyl)phthalate was derived from assessment of testicular toxicity. [source]


Methodology for the evaluation of cumulative episodic exposure to chemical stressors in aquatic risk assessment,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2000
Michael G. Morton
Abstract An ecological risk assessment method was developed to evaluate the magnitude, duration, and episodic nature of chemical stressors on aquatic communities. The percent of an ecosystem's species at risk from a designated chemical exposure scenario is generated. In effects assessment, probabilistic extrapolation methods are used to generate estimated safe concentrations (ESCs) for an ecosystem using laboratory toxicity test results. Fate and transport modeling is employed to generate temporal stressor concentration profiles. In risk characterization, area under the curve integration is performed on predicted exposure concentration profiles to calculate a cumulative exposure concentration (CEC) for the exposure event. A correction is made to account for the allowable exposure duration to the stressor ESC. Finally, the CEC is applied to the extrapolation model (curve) of the stressor to predict percent species at risk to the episodic exposure. The method may be used for either prospective or retrospective risk assessments. The results of a retrospective risk assessment performed on the Leadenwah Creek, South Carolina, USA, estuarine community are presented as a case study. The creek experienced periodic episodes of pesticide-contaminated agricultural runoff from 1986 through 1989. Although limited biological data were available for method validation, the risk estimates compared well with the Leadenwah Creek in situ bioassay results. [source]


Arsenic and thallium data in environmental samples: Fact or fiction?

REMEDIATION, Issue 4 2010
Susan D. Chapnick
Matrix effects may increasingly lead to erroneous environmental decisions as regulatory limits or risk-based concentrations of concern for trace metals move lower toward the limits of analytical detection. A U.S. Environmental Protection Agency Office of Technical Standards Alert estimated that environmental data reported using inductively coupled plasma spectrometry (ICP-AES) has a false-positive rate for thallium of 99.9 percent and for arsenic of 25 to 50 percent. Although this does not seem to be widely known in the environmental community, using three case studies, this article presents data in environmental samples that demonstrate severe matrix effects on the accuracy of arsenic and thallium results. Case Study 1 involves soil results with concentrations that approached or exceeded the applicable regulatory soil cleanup objectives of 13 mg/kg for arsenic and 2 mg/kg for thallium. Reanalysis using ICP coupled with a mass spectrometer (ICP-MS) confirmed all thallium results were false positives and all arsenic results were biased high, concluding no action was required for soil remediation. Case Study 2 involves groundwater results for thallium at a Superfund site, where thallium was detected in groundwater up to 21.6 , g/L using ICP-AES. Reanalysis by ICP-MS reported thallium as nondetect below the applicable regulatory level in all samples. ICP-MS is usually a more definitive and accurate method of analysis compared to ICP-AES; however, this is not always the case, as we demonstrate in Case Study 3, using data from groundwater samples at an industrial site. Through a weight-of-evidence approach, it is demonstrated that although method quality control results were acceptable, interferences in some groundwater samples caused biased high results for arsenic using ICP-MS, which were significantly lower when reanalyzed using hydride generation atomic fluorescence spectrometry. Causes of these interference effects and conclusions from the three case studies to obtain accurate metal data for site assessment, risk characterization, and remedy selection are discussed. © 2010 Wiley Periodicals, Inc. [source]


An ecological risk assessment for spinosad use on cotton

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 1 2002
Cheryl B Cleveland
Abstract Spinosad is a reduced-risk insecticide with a novel mode of action that provides an alternative to older classes of insecticides such as organophosphates, carbamates and pyrethroids. A comprehensive ecological risk assessment for spinosad use in US cotton crops is presented within a framework of tiered levels of refinement following the guidelines of the US EPA for ecological risk assessments. Toxicity information for a variety of species is documented and utilized, environmental concentrations estimated, and risk characterizations in the form of risk quotients are quantified. Results indicate that spinosad use in cotton does not exceed the most conservative Tier I levels of concern (LOC) values for groundwater, mammals and birds or acute risk to aquatic organisms. Use of very conservative Tier I screening methods resulted in exceeding LOC values for chronic exposure for some aquatic organisms, thus prompting further refinement. When the exposure prediction was refined using less conservative, Tier II mechanistic environmental fate transport models to predict off-site transport and environmental concentrations, chronic risk was not predicted for these species. Spinosad is acutely toxic to bees under laboratory conditions, but toxicity of residue studies and field studies indicate that under actual use conditions the impact on bees is minimal. © 2001 Society of Chemical Industry [source]