Home About us Contact | |||
Rise Velocity (rise + velocity)
Selected AbstractsTerminal and transient drop rise velocity of single toluene droplets in waterAICHE JOURNAL, Issue 1 2010Mirco Wegener Abstract The knowledge of the drop rise velocity in dispersed systems is of fundamental importance. Especially, the residence time is needed for calculation of mass transfer rates in extraction columns. This work deals with fluid dynamic measurements of toluene droplets rising in water ranging from 1.0 to 7.0 mm, with the premise of high purity of the used chemicals. The toluene/water-system is widely used as a test system with high interfacial tension. A semiempirical correlation for pure systems to predict the terminal velocity of single rising/falling droplets based on experimental data is presented. Results show that a distinction between maximum and characteristic mean values of the drop rise velocity is necessary, especially in the diameter range 2.4,3.0 mm where unexpected velocity fluctuations occur. Two distinct terminal rise velocities were observed for 3 mm droplets. Furthermore, comparisons of the Weber-Reynolds-correlation and the drag coefficient with correlations from literature show good agreement. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Important Factors in Bubble Coalescence Modeling in Stirred Tank ReactorsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003Rahman Sudiyo Abstract Bubble coalescence has been studied in a 2.6 L stirred tank. Instantaneous velocity fields were measured using PIV and corresponding turbulent kinetic energy, dissipation rate, various length and timescales were estimated. All of these data, combined with data of local gas hold-up, bubble size and coalescence rate obtained with shadowgraph were used to assess bubble coalescence at different positions. Results show that bubble coalescence takes place mostly near the tank wall, especially on the leeward side of baffles. The most important factors affecting coalescence are gas hold-up, fluctuation of liquid velocity, different rise velocities of bubbles, and trapping of bubbles in stationary and turbulent eddies. On a étudié la coalescence des bulles dans un réservoir agité de 2,6 L. Les champs de vitesse instantanée ont été mesurés par vélocimétrie à imagerie de particules (PIV), et l'énergie cinétique turbulente correspondante, la vitesse de dissipation et diverses échelles de longueur et de temps ont été estimés. Toutes ces données, combinées à des données de rétention de gaz locale, de taille des bulles et de vitesse de coalescence obtenues avec le projecteur de profils, ont permis d'évaluer la coalescence des bulles à différentes positions. Les résultats montrent que la coalescence des bulles se produit principalement près de la paroi du réservoir, spécialement sur la face aval des chicanes. Les principaux facteurs qui influent la coalescence sont la rétention de gaz, la fluctuation de la vitesse de liquide, les différentes vitesses d'ascension des bulles et le piégeage des bulles dans des tourbillons stationnaires et turbulents. [source] Terminal and transient drop rise velocity of single toluene droplets in waterAICHE JOURNAL, Issue 1 2010Mirco Wegener Abstract The knowledge of the drop rise velocity in dispersed systems is of fundamental importance. Especially, the residence time is needed for calculation of mass transfer rates in extraction columns. This work deals with fluid dynamic measurements of toluene droplets rising in water ranging from 1.0 to 7.0 mm, with the premise of high purity of the used chemicals. The toluene/water-system is widely used as a test system with high interfacial tension. A semiempirical correlation for pure systems to predict the terminal velocity of single rising/falling droplets based on experimental data is presented. Results show that a distinction between maximum and characteristic mean values of the drop rise velocity is necessary, especially in the diameter range 2.4,3.0 mm where unexpected velocity fluctuations occur. Two distinct terminal rise velocities were observed for 3 mm droplets. Furthermore, comparisons of the Weber-Reynolds-correlation and the drag coefficient with correlations from literature show good agreement. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Flow and mass transfer of fully resolved bubbles in non-Newtonian fluidsAICHE JOURNAL, Issue 7 2007Stefan Radl Abstract In this work, high-resolution 2-D numerical simulations were performed on the motion of deformable bubbles in non-Newtonian fluids and the associated mass transfer. For that purpose, we have implemented a semi-Lagrangian advection scheme and improved the fluid dynamic calculation by the usage of implicit algorithms. Non-Newtonian fluids are described by generalized Newtonian as well as viscoelastic model fluids. As shear-thinning model we use a Power-Law and a Carreau-Yasuda model, the viscoelastic fluid simulations are based on an Upper-Convected Maxwell model combined with a recently introduced model for the evolution of the effective shear rate. The mathematical challenges arising from the hyperbolic nature of the resulting set of equations are addressed by inclusion of artificial diffusion in the stress equation. In our work, it was found that shear thinning effects have impact on collision rates, and therefore, may influence coalescence of bubbles in non-Newtonian liquids. Furthermore, for the first time, concentration fields of dissolved gas in viscoelastic fluids are presented. The study shows that the fluid elasticity plays a major role for bubble rise velocity, and therefore, mass transfer. As the wake dynamics differ significantly from that in Newtonian liquids, abnormal mixing characteristics can be expected in the bubbly flow of viscoelastic fluids. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source] Bubble shape, gas flow and gas,liquid mass transfer in pulp fibre suspensionsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010L. K. Ishkintana Abstract Gas,liquid mass transfer in pulp fibre suspensions in a batch-operated bubble column is explained by observations of bubble size and shape made in a 2D column. Two pulp fibre suspensions (hardwood and softwood kraft) were studied over a range of suspension mass concentrations and gas flow rates. For a given gas flow rate, bubble size was found to increase as suspension concentration increased, moving from smaller spherical/elliptical bubbles to larger spherical-capped/dimpled-elliptical bubbles. At relatively low mass concentrations (Cm,=,2,3% for the softwood and Cm,,,7% for the hardwood pulp) distinct bubbles were no longer observed in the suspension. Instead, a network of channels formed through which gas flowed. In the bubble column, the volumetric gas,liquid mass transfer rate, kLa, decreased with increasing suspension concentration. From the 2D studies, this occurred as bubble size and rise velocity increased, which would decrease overall bubble surface area and gas holdup in the column. A minimum in kLa occurred between Cm,=,2% and 4% which depended on pulp type and was reached near the mass concentration where the flow channels first formed. le transfert de masse gaz-liquide dans des suspensions de fibres de pulpe, dans une colonne à bulles de traitement en lot, est expliqué par des observations faites dans une colonne 2D de la taille et de la forme des bulles. Deux suspensions de fibres de pulpe (pulpes kraft de bois dur et de bois tendre) ont été étudiées sur un intervalle de concentrations en masse des suspensions et sur un intervalle de débits de gaz. Pour un débit de gaz donné, on a observé que la taille des bulles augmentait avec l'augmentation de la concentration de la suspension, passant de petites bulles sphériques/elliptiques à des bulles plus grosses de forme quasi-sphérique avec capuchon à elliptique avec dépression. À des concentrations en masse relativement basses (Cm,=,2,3% pour le bois tendre et Cm,=,,7% pour la pulpe de bois dur), des bulles distinctes n'étaient plus observées dans la suspension. Au lieu de cela, un réseau de canaux se formait, au travers duquel le gaz s'écoulait. Dans la colonne à bulles, le taux de transfert de masse volumétrique gaz-liquide, kLa, diminuait avec l'augmentation de la concentration de la suspension. À partir des études 2D, cela se produisait lorsque la taille des bulles et la vélocité ascendante augmentaient, ce qui devrait faire diminuer la surface d'ensemble des bulles et la retenue de gaz dans la colonne. Un minimum de kLa a été observé avec Cm,=,2% et 4% (selon le type de pulpe) et était atteint à proximité de la concentration en masse pour laquelle les canaux d'écoulement commençaient à se former. [source] Direct simulation of the buoyant rise of bubbles in infinite liquid using level set methodTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2008Zhao Yu Abstract In this study, 3-D level set method is applied to investigate the rise of gas bubbles in infinite liquid domain due to the buoyancy force. A number of typical regimes for single bubble rising are studied, including the ellipsoidal, ellipsoidal cap, spherical cap, and skirted bubbles. The bubble shape and rise velocity predicted by the simulation are compared with the graphical correlations of Grace, Trans. Inst. Chem. Eng., 51, 116,120, (1973) and Bhaga and Weber, J. Fluid Mech., 105, 61,85, (1981). Good agreement is found between the simulation results and the correlations. These simulations cover a wide range of the parameters, including Eo, Mo, and Re, and demonstrate the capability and accuracy of level set method for simulation of bubbles under various conditions with considerable deformation. Finally, simulation results for the coalescence of two bubbles are also presented. Dans cette étude, une méthode de level set en 3-D est utilisée pour examiner la montée des bulles de gaz due à la force de flottabilité dans un domaine liquide infini. Plusieurs régimes typiques de montée d'une bulle sont étudiés, dont le régime ellipsoïdal, le chapeau ellipsoïdal, le chapeau sphérique et les ceintures de bulles. La forme des bulles et la vitesse de montée prédites par la simulation sont comparées aux corrélations graphiques de Grace, Trans. Inst. Chem. Eng., 51, 116,120, (1973), et Bhaga et Weber, J. Fluid Mech., 105, 61,85, (1981). Un bon accord est trouvé entre les résultats des simulations et les corrélations. Ces simulations couvrent un large éventail de paramètres, notamment Eo, Mo, et Re, et montrent la capacité et la précision de la méthode level set pour la simulation des bulles dans des conditions diverses avec une déformation considérable. Enfin, les résultats des simulations sont également présentés pour la coalescence de deux bulles. [source] 2D Slurry Bubble Column Hydrodynamic Phenomena Clarified with a 3D Gas,Liquid ModelTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003Jeroen H. J. Kluytmans Abstract The gas hold-up in a 2D bubble column is modelled using a 3D gas hold-up model. The influence of the scale of 2D bubble columns on several parameters, for instance, transition gas hold-up, transition gas velocity, and bubble rise velocities, is investigated and related to 3D bubble columns. By adapting the rise velocity of the large bubbles of an existing 3D bubble column model (Krishna et al., 2001a), the gas hold-up in both the homogeneous and the heterogeneous regime can be described satisfactorily. By adjusting the transition points only, it is also possible to describe the gas hold-up in systems containing small amounts of carbon particles and electrolyte. The smallest dimension of the 2D slurry bubble column, the column thickness, influences the location of the regime transition point. In the heterogeneous regime, however, it is only the largest column dimension, the column width, that influences the gas hold-up. These observations together enable proper 2D/3D bubble column comparison in future studies. Dans cette étude, la rétention de gaz dans une colonne à bulles en 2D est modélisée à l'aide d'un modèle de rétention de gaz en 3D. L'influence de l'échelle des colonnes à bulles 2D sur plusieurs paramètres, comme la rétention de gaz de transition, la vitesse de gaz de transition et les vitesses de montée des bulles, est étudiée et reliée aux colonnes à bulles 3D. On montre qu'en adaptant la vitesse de montée des bulles larges fournie par un modèle de colonnes à bulles 3D existant (Krishna et al., 2001a), la rétention de gaz tant en régime homogène qu'hétérogène peut être décrite de manière satisfaisante. En ajustant seulement les points de transition, il est également possible de décrire la rétention de gaz dans des systèmes contenant de petites quantités de particules de carbone et d'électrolyte. On a trouvé que la plus petite dimension de la colonne à bulles à suspensions 2D, soit l'épaisseur de la colonne, influence la position du point de transition de régime. Cependant, dans le régime hétérogène, c'est seulement la plus grande dimension de la colonne, soit la largeur de la colonne, qui influence la rétention de gaz. Toutes ces observations vont permettre des comparaisons adéquates des colonnes 2D et 3D dans les prochaines études. [source] Intensification of Slurry Bubble Columns by Vibration ExcitementTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003Jürg Ellenberger Abstract We show that application of low-frequency vibrations, in the 30 to 60 Hz range, to the liquid phase of an air , water , silica catalyst slurry bubble column causes significant enhancement of both gas holdup and volumetric mass transfer coefficient over a wide range of superficial gas velocities. The increase in the gas holdup is attributed mainly to a significant reduction in the rise velocity of the bubble swarm due to the generation of standing waves in the column. Furthermore, application of vibrations to the liquid phase serves to stabilize the homogenous bubbly flow regime and delay the onset of the churn-turbulent flow regime. On montre que l'application de vibrations de faibles fréquences (entre 30 et 60 Hz) à la phase liquide d'une colonne à bulles à suspensions de catalyseur air-eau-silice, permet une amélioration significative à la fois du coefficient de rétention de gaz et du coefficient du transfert de matière volumétrique pour une vaste gamme de vitesses de gaz superficielles. L'augmentation de la rétention de gaz est imputée principalement à une réduction importante de la vitesse de montée de l'essaim de bulles qui est due à la création de vagues stationnaires dans la colonne. En outre, l'application des vibrations à la phase liquide sert à stabiliser le régime d'écoulement à bulles homogène et retarde l'apparition du régime d'écoulement agité-pistonnant. [source] Gas hold-up in bubble columns: Operation with concentrated slurries versus high viscosity liquidTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2000Rajamani Krishna Abstract The hydrodynamics of bubble columns with concentrated slurries of paraffin oil (density, ,L = 790 kg/m3; viscosity, ,L = 0.0029 Pa·s; surface tension, , = 0.028 N·m1) containing silica particles (mean particle diameter dp = 38 ,m) has been studied in columns of three different diameters, 0.1, 0.19 and 0.38 m. With increasing particle concentration, the total gas hold-up decreases significantly. This decrease is primarily caused by the destruction of the small bubble population. The hold-up of large bubbles is practically independent of the slurry concentration. The measured gas hold-up with the 36% v paraffin oil slurry shows remarkable agreement with the corresponding data obtained with Tellus oil (,L = 862 kg/m3; ,L = 0.075 Pa·s; , = 0.028 N·m,1) as the liquid phase. Dynamic gas disengagement experiments confirm that the gas dispersion in Tellus oil also consists predominantly of large bubbles. The large bubble hold-up is found to decrease significantly with increasing column diameter. A model is developed for estimation of the large bubble gas hold-up by introduction of an wake-acceleration factor into the Davies-Taylor-Collins relation (Collins, 1967), describing the influence of the column diameter on the rise velocity of an isolated spherical cap bubble. On a étudié dans des colonnes de trois diamètres différents, soient 0,1, 0,19 et 0,38 m, l'hydrodynamique de colonnes à bulles avec des suspensions concentrées d'huile de paraffine (masse volumique, ,L = 790 kg/m3; viscosité, ,L = 0,0029 Pa·s; tension de surface, , = 0,028 N·m,1) contenant des particules de silice (diamètre moyen des particules dp = 38 ,m). Lorsque la concentration de particules augmente, la rétention de gaz totale diminue considérablement. Cette diminution est principalement due à la destruction de la population de petites bulles. La rétention de grosses bulles est pratiquement indépendante de la concentration des suspensions. La rétention de gaz mesurée avec la suspension d'huile paraffine à 36% volumique concorde remarquablement bien avec les données correspondantes obtenues avec de l'huile de Tellus (,L = 86 kg/m,3; ,L = 0,075 Pa·s; , = 0,028 N·m,1) comme phase liquide. Des expériences de dégagement de gaz dynamiques confirment que la dispersion dans l'huile de Tellus se compose essentiellement de grosses bulles. On a trouvé que la rétention de grosses bulles diminuait de manière significative avec l'augmentation du diamètre de la colonne. On a mis au point un modèle pour l'estimation de la rétention de grosses bulles de gaz par l'introduction d'un facteur d'accélération dans le sillage dans la relation de Davies-Taylor-Collins (Collins, 1967), décrivant l'influence du diamètre de colonne sur la vitesse de montée d'une bulle à t,te sphérique isolée. [source] Holdup and Pressure Drop in Vertical and Near-Vertical Three-Phase Up-Flow: A Collection of Flow RegimesASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2002P.L. Spedding Three-phase oil, water and air data are reported for vertical and near vertical +86 5° upflow in a 0 026 m i d pipe In general, the liquid holdup for near vertical flow was greater than for the corresponding vertical upflow, the exception being at low liquid and superficial velocities under 0 6 m/s and high superficial gas velocities over 20 m/s Here the liquid holdup varied being sometimes below and other times above the corresponding vertical value These variations of liquid holdup were shown to depend on the fine structure of the flow patterns present The total pressure drop and its component parts showed significantly different patterns of behaviour depending on whether the superficial gas velocity was above or below the rise velocity of a Taylor bubble The total pressure drop generally was greater for near vertical flow compared to the vertical upflow case but reflected changes in the fine structure of the flow patterns A comprehensive collection of flow regimes is included in this paper [source] |