Reverse Micelles (reverse + micelle)

Distribution by Scientific Domains

Terms modified by Reverse Micelles

  • reverse micelle method

  • Selected Abstracts


    SN2 Displacement by Bromide Ions in Dichloromethane , The Role of Reverse Micelles

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2006
    Lucia Brinchi
    Abstract Reverse micellar systems are of interest as reaction media because they are powerful models for biological compartmentalization, enzymatic catalysis and separation of biomolecules. Solutions of ionic surfactants in apolar solvents may contain reverse micelles, but they may also contain ion pairs, or small clusters, with waters of hydration. We studied the bimolecular reaction in CH2Cl2 solutions of cationic tetraalkylammonium bromide salts (onium salts), such as cetyltrimethylammonium bromide (CTABr), cetyltripropylammonium bromide (CTPABr) and tetra- n -butylammonium bromide (TBABr). Methylnaphthalene-2-sulfonate (,-MeONs), its 6-sulfonate derivative (,-MeONsS,) as the 2,6-lutidinium salt and methyl-5- N,N,N,trimethylammonium naphthalene-1-sulfonate (,-MeONsNT+) as the trifluoromethanesulfonate salt react with Br, in CH2Cl2. First-order rate constants, kobs, increase linearly and similarly for the three substrates with increasing concentrations of the onium salts. Reactions are faster with TBABr than they are with CTPABr and CTABr, and the reactivity of the three substrates is in the order: ,-MeONsNT+ >> ,-MeONsS, > ,-MeONs. The reactions are inhibited by the addition of H2O, but CTABr tolerates H2O in large excess. At [H2O]/[CTABr] = w0 , 6, "water-pool" reverse micelles form, and kobs for all three substrates is then independent of w0. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Metathetic Reaction in Reverse Micelles: Synthesis of Nanostructured Alkaline-Earth Metal Phosphates

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2007
    Purnendu Parhi
    For the past few years, hydroxyapatite (HAp) has been identified as a potential biomaterial due to its excellent biocompatibility and bioactivity. The preparation of nanostructured HAp with controlled powder characteristics is a pre-requisite for processing it into useful biocomposites. Here, the synthesis of nanorods of calcium hydroxyapatite (Ca-HAp), strontium hydroxyapatite (Sr-HAp), and barium hydroxyapatite (Ba-HAp) by exploiting the metathetic reaction taking place in reverse micelles in the presence of cetyltrimethylammonium bromide has been reported. Powder X-ray diffraction analysis and thermogravimetric measurements confirm the formation of monophasic Ca-HAp and Sr-HAp. The growth of nanorods was further confirmed using transmission electron microscopy studies. The average lengths of Ca-HAp and Sr-HAp were ,60 and 30 nm, respectively. However, the preparation of Ba-HAp invariably yielded a multiphasic mixture with other competitive phases like BaHPO4 and Ba(H2PO4)2. [source]


    Exciplex-type Behavior and Partition of 3-Substituted Indole Derivatives in Reverse Micelles Made with Benzylhexadecyldimethylammonium Chloride, Water and Benzene,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2001
    Claudio D. Borsarelli
    ABSTRACT The fluorescence properties of 3-methylindole (MI), 3-indoleacetic acid (IAA), 3-indoleethyltrimethylammonium bromide (IETA), l -tryptophan (Trp) and tryptamine hydrochloride (TA) were studied in reverse micelles solutions made with the cationic surfactant benzylhexadecyldimethylammonium chloride (BHDC) in benzene as a function of the molar ratio water/surfactant R (=[H2O]/[BHDC]). The fluorescence quenching of the model compound MI by benzene in cyclohexane solutions and by BHDC in benzene solutions were also studied in detail. The fluorescence of MI in benzene is characteristic of a charge-transfer exciplex. The exciplex is quenched by the presence of BHDC, due to the interactions of the surfactant ion pairs with the polar exciplex. In reverse micelle solutions at low R values, all the indoles show exciplex-type fluorescence. As R increases, the fluorescence behavior strongly depends on the nature of the indole derivative. The anionic IAA remains anchored to the cationic interface and its fluorescence is quenched upon water addition due to the increases of interface's micropolarity. For IETA, TA and Trp an initial fluorescence quenching is observed at increasing R, but a fluorescence recovery is observed at R > 5, indicating a probe partition between the micellar interface and the water pool. For the neutral MI, the fluorescence changes with R indicate the partition of the probe between the micellar interface and the bulk benzene pseudophase. A simple two-site model is proposed for the calculation of the partition constants K as a function of R. In all cases, the calculation showed that even at the highest R value, about 90% of the indole molecules remain associated at the micellar interface. [source]


    Protein Refolding Mediated by Reverse Micelles of Cibacron Blue F-3GA Modified Nonionic Surfactant

    BIOTECHNOLOGY PROGRESS, Issue 2 2006
    Xiao-Yue Wu
    An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n -hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3,3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl2. Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery. [source]


    Enzymatic Redox Cofactor Regeneration in Organic Media: Functionalization and Application of Glycerol Dehydrogenase and Soluble Transhydrogenase in Reverse Micelles

    BIOTECHNOLOGY PROGRESS, Issue 4 2005
    Hirofumi Ichinose
    An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media. [source]


    Enhanced Stabilization of Reverse Micelles by Compressed CO2

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 4 2005
    Dong Shen Dr.
    Abstract The effect of compressed CO2 on the solubilization capacity of water in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in longer chain n -alkanes was studied at different temperatures and pressures. It was found that the amount of solubilized water is increased considerably by CO2 in a suitable pressure range. The suitable CO2 pressure range in which the solubilization capacity of water could be enhanced decreased with increasing W0 (water-to-AOT molar ratio). The microenvironments in the CO2 -stabilized reverse micelles were investigated by UV/Vis adsorption spectroscopy with methyl orange (MO) as probe. The mechanism by which the reverse micelles are stabilized by CO2 is discussed in detail. The main reason is likely to be that CO2 has a much smaller molecular volume than the n -alkane solvents studied in this work. Therefore, it can penetrate the interfacial film of the reverse micelles and stabilize them by increasing the rigidity of the micellar interface and thus reducing the attractive interaction between the droplets. However, if the CO2 pressure is too high, the solvent strength of the solvents is reduced markedly, and this induces phase separation in the micellar solution. [source]


    Reverse micellar microextraction for rapid analysis of thiol-containing peptides and amino acids by atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2008
    Kavita Agrawal
    Simple, rapid and inexpensive one-step reverse micellar microextraction (RMME) procedures were combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the determination of thiol-containing peptides and amino acids. In this investigation, a thiol-containing peptide (HW6) was chosen as model compound to understand the mechanism of RMME. The electrostatic interactions between the thiol-containing peptide and reverse micelles were proposed to be reason for the transfer of analytes from the aqueous phase to the organic phase. Reverse micelles were formed by the cationic surfactant, methyltrioctylammonium chloride (MTOAC). The best extraction efficiency of HW6 was obtained under the following conditions: pH 11.0, ionic strength 5.0,mM of KCl and micelle concentration 7.0,mM of MTOAC. The limits of detection (LODs) obtained for HW6 in water, urine and plasma samples were 0.15, 0.19 and 0.28,µM, respectively, with relative standard deviation (RSD) values in the range ±8.8,10.5%. The sensitivity obtained in water by the present method was 45-fold higher than that of the conventional use of atmospheric-pressure (AP)-MALDI MS. Furthermore, the applicability of the proposed approach was extended for the determination of thiol-containing amino acids in sample solutions by using MALDI time-of-flight (TOF) MS. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Butanolysis of 2-methylbenzenediazonium ions: product distribution, rate constants of product formation, and activation parameters

    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 5 2009
    M. José Pastoriza-Gallego
    Abstract We have determined the product distributions, the rate constants of product formation and substrate loss, and the activation parameters for the butanolysis of 2-methylbenzenediazonium, 2MBD, tetrafluoroborate in aqueous 1-Butanol (BuOH) solutions by combining UV,VIS spectroscopy, high performance liquid chromatography (HPLC), and a derivatization protocol that traps unreacted 2MBD as a stable azo dye. BuOH/H2O solutions are miscible over a narrow composition range, but in reverse micelles composed of sodium dodecyl sulfate, SDS, BuOH, and water, are miscible between 45,80%. Two major and two minor dediazoniation products are observed, 2-cresol, ArOH, 2-butyl-tolyl-ether, ArOBu, and small amounts of 2-chlorobenzene, ArCl (from HCl added to control solution acidity) and toluene, ArH (a reduction product). Product yields depend on experimental conditions, but quantitative conversion to products is achieved over the entire composition ranges investigated. The observed rate constants, kobs, obtained by monitoring 2MBD loss or by monitoring ArOH or ArOBu formation, are the same and they are only modestly affected by changes in the solution composition. The activation parameters obtained from the effect of temperature on kobs show that the enthalpy of activation is relatively high compared to those found in bimolecular reactions and the entropy of activation is small but positive. The results suggest that 2MBD is mainly sampling in the BuOH-H2O rich interfacial region of the reverse micelle and are consistent with 2MBD decomposing through a DN,+,AN mechanism, i.e., a rate limiting formation of an aryl cation that reacts immediately with nucleophiles. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    SN2 Displacement by Bromide Ions in Dichloromethane , The Role of Reverse Micelles

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2006
    Lucia Brinchi
    Abstract Reverse micellar systems are of interest as reaction media because they are powerful models for biological compartmentalization, enzymatic catalysis and separation of biomolecules. Solutions of ionic surfactants in apolar solvents may contain reverse micelles, but they may also contain ion pairs, or small clusters, with waters of hydration. We studied the bimolecular reaction in CH2Cl2 solutions of cationic tetraalkylammonium bromide salts (onium salts), such as cetyltrimethylammonium bromide (CTABr), cetyltripropylammonium bromide (CTPABr) and tetra- n -butylammonium bromide (TBABr). Methylnaphthalene-2-sulfonate (,-MeONs), its 6-sulfonate derivative (,-MeONsS,) as the 2,6-lutidinium salt and methyl-5- N,N,N,trimethylammonium naphthalene-1-sulfonate (,-MeONsNT+) as the trifluoromethanesulfonate salt react with Br, in CH2Cl2. First-order rate constants, kobs, increase linearly and similarly for the three substrates with increasing concentrations of the onium salts. Reactions are faster with TBABr than they are with CTPABr and CTABr, and the reactivity of the three substrates is in the order: ,-MeONsNT+ >> ,-MeONsS, > ,-MeONs. The reactions are inhibited by the addition of H2O, but CTABr tolerates H2O in large excess. At [H2O]/[CTABr] = w0 , 6, "water-pool" reverse micelles form, and kobs for all three substrates is then independent of w0. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Conformational changes of ,-lactoglobulin in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles

    FEBS JOURNAL, Issue 4 2004
    A fluorescence, CD study
    The effect of ,-lactoglobulin encapsulation in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles on the environment of protein and on Trp was analysed at different water contents (,0). CD data underlined the distortion of the ,-sheet and a less constrained tertiary structure as the ,0 increased, in agreement with a concomitant red shift and a decrease in the signal intensity obtained in steady-state fluorescence measurements. Fluorescence lifetimes, evaluated by biexponential analysis, were ,1 = 1.28 ns and ,2 = 3.36 ns in neutral water. In reverse micelles, decay-associated spectra indicated the occurrence of important environmental changes associated with ,0. Bimolecular fluorescence quenching by CCl4 and acrylamide was employed to analyse alterations in the accessibility of the two Trp residues in ,-lactoglobulin, induced by changes in ,0. The average bimolecular quenching constant <> was found not to depend on ,0, confirming the insolubility of this quencher in the aqueous interface, while <> increases with ,0. The drastic decrease with ,0 of kq, associated with the longest lifetime, , comparatively to the increase of , emphasizes the location of ,-lactoglobulin in the aqueous interfacial region especially at ,0,,10. The fact that (,0 = 30) , (water) also confirms the important conformational changes of encapsulated ,-lactoglobulin. [source]


    Epoxidation of Polyunsaturated Fatty Acid Double Bonds by Dioxirane Reagent: Regioselectivity and Lipid Supramolecular Organization

    HELVETICA CHIMICA ACTA, Issue 10 2006
    Stanislav
    Abstract The use of dimethyldioxirane (DMD) as the epoxidizing agent for polyunsaturated fatty acids was investigated. With fatty acid methyl esters, this is a convenient method for avoiding acidic conditions, using different solvents, and simplifying the isolation procedures, with less contamination due to by-products. The reagent was also tested with free fatty acids in water. In this case, the supramolecular organization of fatty acids influenced the reaction outcome, and the epoxidation showed interesting regioselective features. The CC bonds closest to the aqueous-micelle interface is the most favored for the interaction with dimethyldioxirane. The preferential epoxidation of linoleic acid (=,(9Z,12Z)-octadeca-9,12-dienoic acid) to the 9,10-monoepoxy derivative was achieved, with a high yield and 65% regioselectivity. In case of arachidonic acid (=,(5Z,8Z,11Z,14Z)-eicosa-5,8,11,14-tetraenoic acid) micelles, the regioselective outcome with formation of the four possible monoepoxy isomers was studied under different conditions. It resulted to be a convenient synthesis of ,cis -5,6-epoxyeicosatrienoic acid' (=,3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-butanoic acid), whereas in reverse micelles, epoxidation mostly gave ,cis -14,15-epoxyeicosatrienoic acid (=,(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoic acid). [source]


    Cyanide-Bridged CrIII,NiII Superparamagnetic Nanoparticles,

    ADVANCED MATERIALS, Issue 10 2003
    L. Catala
    Using reverse micelles as nanoreactors facilitates the preparation of bimetallic CrIII,NiII cyanide-bridged nanoparticles that behave as superparamagnets with a blocking temperature of 5.5 K. The Figure presents a plot of magnetization vs. field for various temperatures. Redispersion in an organic solution allows the particles to be diluted in a polymer matrix (inset of Figure) leading to a shift of the blocking temperature down to 2 K. [source]


    Structural and ligand-binding properties of serum albumin species interacting with a biomembrane interface

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2007
    Takamitsu Kosa
    Abstract In the process of drug development, preclinical testing using experimental animals is an important aspect, for verification of the efficacy and safety of a drug. Serum albumin is a major binding protein for endogenous and exogenous ligands and regulates their distribution in various tissues. In this study, the structural and drug-binding properties of albumins on a biomembrane surface were investigated using reverse micelles as a model membrane. In reverse micelles, the secondary structures of all albumins were found, to varying degrees, to be intermediate between the native and denatured states. The tertiary structures of human and bovine albumin were similar to those of the native and intermediate states, respectively, whereas those of the dog, rabbit, and rat were in a denatured state. Thus, bovine albumin is an appropriate model for studying structural changes in human albumin in a membrane-water phase. Binding studies also showed the presence of species difference in the change in binding capacity of albumins during their interaction with reverse micelles. Among the albumins, rat albumin appears to be a good model for the protein-mediated drug uptake of human albumin in a biomembrane environment. These findings are significant in terms of the appropriate extrapolation of pharmacokinetics and pharmacodynamics data in various animals to humans. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 3117,3124, 2007 [source]


    Butanolysis of 2-methylbenzenediazonium ions: product distribution, rate constants of product formation, and activation parameters

    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 5 2009
    M. José Pastoriza-Gallego
    Abstract We have determined the product distributions, the rate constants of product formation and substrate loss, and the activation parameters for the butanolysis of 2-methylbenzenediazonium, 2MBD, tetrafluoroborate in aqueous 1-Butanol (BuOH) solutions by combining UV,VIS spectroscopy, high performance liquid chromatography (HPLC), and a derivatization protocol that traps unreacted 2MBD as a stable azo dye. BuOH/H2O solutions are miscible over a narrow composition range, but in reverse micelles composed of sodium dodecyl sulfate, SDS, BuOH, and water, are miscible between 45,80%. Two major and two minor dediazoniation products are observed, 2-cresol, ArOH, 2-butyl-tolyl-ether, ArOBu, and small amounts of 2-chlorobenzene, ArCl (from HCl added to control solution acidity) and toluene, ArH (a reduction product). Product yields depend on experimental conditions, but quantitative conversion to products is achieved over the entire composition ranges investigated. The observed rate constants, kobs, obtained by monitoring 2MBD loss or by monitoring ArOH or ArOBu formation, are the same and they are only modestly affected by changes in the solution composition. The activation parameters obtained from the effect of temperature on kobs show that the enthalpy of activation is relatively high compared to those found in bimolecular reactions and the entropy of activation is small but positive. The results suggest that 2MBD is mainly sampling in the BuOH-H2O rich interfacial region of the reverse micelle and are consistent with 2MBD decomposing through a DN,+,AN mechanism, i.e., a rate limiting formation of an aryl cation that reacts immediately with nucleophiles. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Metathetic Reaction in Reverse Micelles: Synthesis of Nanostructured Alkaline-Earth Metal Phosphates

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2007
    Purnendu Parhi
    For the past few years, hydroxyapatite (HAp) has been identified as a potential biomaterial due to its excellent biocompatibility and bioactivity. The preparation of nanostructured HAp with controlled powder characteristics is a pre-requisite for processing it into useful biocomposites. Here, the synthesis of nanorods of calcium hydroxyapatite (Ca-HAp), strontium hydroxyapatite (Sr-HAp), and barium hydroxyapatite (Ba-HAp) by exploiting the metathetic reaction taking place in reverse micelles in the presence of cetyltrimethylammonium bromide has been reported. Powder X-ray diffraction analysis and thermogravimetric measurements confirm the formation of monophasic Ca-HAp and Sr-HAp. The growth of nanorods was further confirmed using transmission electron microscopy studies. The average lengths of Ca-HAp and Sr-HAp were ,60 and 30 nm, respectively. However, the preparation of Ba-HAp invariably yielded a multiphasic mixture with other competitive phases like BaHPO4 and Ba(H2PO4)2. [source]


    Reverse micellar microextraction for rapid analysis of thiol-containing peptides and amino acids by atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2008
    Kavita Agrawal
    Simple, rapid and inexpensive one-step reverse micellar microextraction (RMME) procedures were combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the determination of thiol-containing peptides and amino acids. In this investigation, a thiol-containing peptide (HW6) was chosen as model compound to understand the mechanism of RMME. The electrostatic interactions between the thiol-containing peptide and reverse micelles were proposed to be reason for the transfer of analytes from the aqueous phase to the organic phase. Reverse micelles were formed by the cationic surfactant, methyltrioctylammonium chloride (MTOAC). The best extraction efficiency of HW6 was obtained under the following conditions: pH 11.0, ionic strength 5.0,mM of KCl and micelle concentration 7.0,mM of MTOAC. The limits of detection (LODs) obtained for HW6 in water, urine and plasma samples were 0.15, 0.19 and 0.28,µM, respectively, with relative standard deviation (RSD) values in the range ±8.8,10.5%. The sensitivity obtained in water by the present method was 45-fold higher than that of the conventional use of atmospheric-pressure (AP)-MALDI MS. Furthermore, the applicability of the proposed approach was extended for the determination of thiol-containing amino acids in sample solutions by using MALDI time-of-flight (TOF) MS. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Degradation patterns of tetracycline antibiotics in reverse micelles and water

    BIOMEDICAL CHROMATOGRAPHY, Issue 11 2006
    Hongkee Sah
    Abstract The objective of this study was to determine the chemical stability of tetracycline and oxytetracycline hydro-chlorides in reverse micelles. Their reverse micellar solutions were prepared using cetyltrimethylammonium bromide, water and ethyl formate. The aqueous solutions of the tetracycline antibiotics were also prepared for comparison. The reverse micellar and aqueous solutions were stored at 37C. Samples were analyzed by high performance liquid chromatography. When evaluation was performed on an aqueous tetracycline HCl solution, its half-life was estimated to be 329 h. Its chemical stability was not improved after being dissolved in the reverse micelles, and a similar half-life of 330 h was observed. However, there were noticeable differences between the two systems in terms of degradation kinetics and degradation byproducts. On the other hand, oxytetracycline HCl was unstable in water so that its half-life was only 34 h. Very interestingly, pronounced improvement in stability was attained with the reverse micellar system: upon dissolving in the reverse micelles, its half-life was increased to 2402 h. There were also marked differences in degradation patterns and mechanisms of oxytetracycline HCl in water and the reverse micelles. Our study indicates that the reverse micellar system has potential applications in solubilizing and stabilizing oxytetracycline HCl, thereby contributing to the development of its dosage forms. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    In this issue: Biotechnology Journal 8/2010

    BIOTECHNOLOGY JOURNAL, Issue 8 2010
    Article first published online: 12 AUG 2010
    Biocatalyst microemulsions Pavlidis et al., Biotechnol. J. 2010, 5, 805,812 Enzymes maintain their catalytic activity when hosted in aqueous nanodroplets like reverse micelles. Researchers from Ioannina, Greece, propose the use of water-in-ionic liquid microemulsionbased organogels (w/IL MBGs) as novel supports for the immobilization of lipase B from Candida antarctica and lipase from Chromobacterium viscosum. These novel lipase-containing w/IL MBGs can be effectively used as solid phase biocatalysts in various polar and non-polar organic solvents or ILs, exhibiting up to 4.4-fold higher esterification activity compared to water-in-oil microemulsion-based organogels. The immobilized lipases retain their activity for several hours at 70°C, while their half life time is up to 25-fold higher compared to that observed in w/IL microemulsions Biocatalyst cryogelation Bieler et al., Biotechnol. J. 2010, 5, 881,885 Entrapment of biocatalysts in hydrogel beads allows stable operation in otherwise deteriorating solvents. Doing this by cryogelation is a gentle method to extend the scope of biocatalysis. To foster the use of this versatile method, researchers from Aachen, Germany, devised an automated injector for the production of PVA/PEG-enzyme immobilisates. The device consists of a thermostated reservoir connected to a programmable injector nozzle and an agitated receiving bath for the droplets. This lab-scale production unit yields up to 1500 beads with immobilized enzyme per minute with a narrow size distribution and good roundness. Biocatalyst membrane reactor Lyagin et al., Biotechnol. J. 2010, 5, 813,821 Screening of biocatalysts, substrates or conditions in the early stages of bioprocess development requires an enormous number of experiments and is a tedious, expensive and time-consuming task. Currently available screening systems can only be operated in batch or fed-batch mode, which can lead to severe misinterpretations of screening results. Researchers from Berlin, Germany, now developed a novel screening system that enables continuous feeding of substrates and continuous removal of products. A prototype based on the membrane reactor concept was designed and operated for a model reaction, the hydrolysis of cellulose. [source]


    His-tagged protein purification by metal-chelate affinity extraction with nickel-chelate reverse micelles

    BIOTECHNOLOGY PROGRESS, Issue 4 2010
    Xiao-Yan Dong
    Abstract Di(2-ethylhexyl) phosphoric acid (HDEHP) was used as a transition metal ion chelator and introduced to the nonionic reverse micellar system composed of equimolar Triton X-45 and Span 80 at a total concentration of 30 mmol/L. Ni(II) ions were chelated to the HDEHP dimers in the reverse micelles, forming a complex denoted as Ni(II)R2. The Ni(II)-chelate reverse micelles were characterized for the purification of recombinant hexahistidine-tagged enhanced green fluorescent protein (EGFP) expressed in Escherichia coli. The affinity binding of EGFP to Ni(II)R2 was proved by investigation of the forward and back extraction behaviors of purified EGFP. Then, EGFP was purified with the affinity reverse micelles. It was found that the impurities in the feedstock impeded EGFP transfer to the reverse micelles, though they were little solubilized in the organic phase. The high specificity of the chelated Ni2+ ions toward the histidine tag led to the production of electrophoretically pure EGFP, which was similar to that purified by immobilized metal affinity chromatography. A two-stage purification by the metal-chelate affinity extraction gave rise to 87% recovery of EGFP. Fluorescence spectrum analysis suggests the preservation of native protein structure after the separation process, indicating the system was promising for protein purification. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


    A metal-chelate affinity reverse micellar system for protein extraction

    BIOTECHNOLOGY PROGRESS, Issue 1 2010
    Xiao-Yan Dong
    Abstract A new nonionic reverse micellar system is developed by blending two nonionic surfactants, Triton X-45 and Span 80. At total surfactant concentrations lower than 60 mmol/L and molar fractions of Triton X-45 less than 0.6, thermodynamically stable reverse micelles of water content (W0) up to 30 are formed. Di(2-ethylhexyl) phosphoric acid (HDEHP; 1,2 mmol/L) is introduced into the system for chelating transition metal ions that have binding affinity for histidine-rich proteins. HDEHP exists in a dimeric form in organic solvents and a dimer associated with one transition metal ion, including copper, zinc, and nickel. The copper-chelate reverse micelles (Cu-RM) are characterized for their W0, hydrodynamic radius (Rh), and aggregation number (Nag). Similar with reverse micelles of bis-2-ethylhexyl sodium sulfosuccinate (AOT), Rh of the Cu-RM is also linearly related to W0. However, Nag is determined to be 30,90 at W0 of 5,30, only quarter to half of the AOT reverse micelles. Then, selective metal-chelate extraction of histidine-rich protein (myoglobin) by the Cu-RM is successfully performed with pure and mixed protein systems (myoglobin and lysozyme). The solubilized protein can be recovered by stripping with imidazole or ethylinediaminetetraacetic acid (EDTA) solution. Because various transition metal ions can be chelated to the reverse micelles, it is convinced that the system would be useful for application in protein purification as well as simultaneous isolation and refolding of recombinant histidine-tagged proteins expressed as inclusion bodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


    Protein Refolding Mediated by Reverse Micelles of Cibacron Blue F-3GA Modified Nonionic Surfactant

    BIOTECHNOLOGY PROGRESS, Issue 2 2006
    Xiao-Yue Wu
    An affinity-based reverse micellar system formulated with nonionic surfactant was applied to the refolding of denatured-reduced lysozyme. The nonionic surfactant of sorbitan trioleate (Span 85) was modified with Cibacron Blue F-3GA (CB) as an affinity surfactant (CB-Span 85) to form affinity-based reverse micelles in n -hexane. The water content of 15 was found optimal for lysozyme refolding in the reverse micellar system of 62.7 mmol/L Span 85 with coupled CB of 0.3 and 0.5 mmol/L. In addition, the operating conditions such as pH and the concentrations of urea and redox reagents were optimized. Under the optimized conditions, complete renaturation of lysozyme at 3,3.5 mg/mL was achieved, whereas dilution refolding in the bulk aqueous phase under the same conditions gave much lower activity recovery. Moreover, the secondary structure of the refolded lysozyme was found to be the same as the native lysozyme. Over 95% of the refolded lysozyme was recovered from CB-Span 85 reverse micelles by a stripping solution of 0.5 mol/L MgCl2. Thus, the present system is advantageous over the conventional reverse micellar system formed with ionic surfactants in the ease of protein recovery. [source]


    Enzymatic Redox Cofactor Regeneration in Organic Media: Functionalization and Application of Glycerol Dehydrogenase and Soluble Transhydrogenase in Reverse Micelles

    BIOTECHNOLOGY PROGRESS, Issue 4 2005
    Hirofumi Ichinose
    An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media. [source]


    Enhanced Stabilization of Reverse Micelles by Compressed CO2

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 4 2005
    Dong Shen Dr.
    Abstract The effect of compressed CO2 on the solubilization capacity of water in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in longer chain n -alkanes was studied at different temperatures and pressures. It was found that the amount of solubilized water is increased considerably by CO2 in a suitable pressure range. The suitable CO2 pressure range in which the solubilization capacity of water could be enhanced decreased with increasing W0 (water-to-AOT molar ratio). The microenvironments in the CO2 -stabilized reverse micelles were investigated by UV/Vis adsorption spectroscopy with methyl orange (MO) as probe. The mechanism by which the reverse micelles are stabilized by CO2 is discussed in detail. The main reason is likely to be that CO2 has a much smaller molecular volume than the n -alkane solvents studied in this work. Therefore, it can penetrate the interfacial film of the reverse micelles and stabilize them by increasing the rigidity of the micellar interface and thus reducing the attractive interaction between the droplets. However, if the CO2 pressure is too high, the solvent strength of the solvents is reduced markedly, and this induces phase separation in the micellar solution. [source]