Retinoid Metabolism (retinoid + metabolism)

Distribution by Scientific Domains


Selected Abstracts


A Gene Knockout Corroborates the Integral Function of Cellular Retinol-binding Protein in Retinoid Metabolism

NUTRITION REVIEWS, Issue 8 2000
Joseph L. Napoli Ph.D.
Continually expanding evidence has moved inexorably toward establishing key functions for cellular retinol-binding protein (CRBP) in retinoid metabolism. These experimental data integrate into a model of CRBP as a chaperone that protects retinol from the cellular milieu and interacts with certain retinoid-metabolizing enzymes. Mutant mice with an inactivated CRBP gene show decreased liver retinyl ester storage, a shorter elimination half-life of liver retinoids, and predisposition to vitamin A deficiency. No morphologic phenotype was observed until vitamin A was exhausted. Although the mechanisms underlying diminished vitamin A in the CRBP-null mice have not been elucidated, the observations support the model of CRBP as a chaperone of retinoid metabolism. [source]


Retinoid metabolism in the small intestine during development of liver cirrhosis

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 5 2009
Sathish Kumar Natarajan
Abstract Background and Aims:, Retinoids are important mediators of cellular differentiation and proliferation in various epithelia of the body including the small intestine. Though alterations in intestinal epithelial cell proliferation have been noted in liver cirrhosis, mechanisms involved in the process are not well understood. This study examined the levels of various retinoids and retinoid-metabolizing enzymes in the small intestine during development of liver cirrhosis. Methods:, Four groups of animals were used (control, phenobarbitone control, thioacetamide and carbon tetrachloride treatment). Twice-weekly intragastric or i.p. administration of carbon tetrachloride or thioacetamide, respectively, produced liver cirrhosis after 3 months, which was confirmed through histology and serum markers. Retinoid levels were measured by high-performance liquid chromatography. Results:, A decrease in the levels of retinal, retinoic acid and retinol was evident in the intestine by 3 months, when cirrhosis was evident histologically, and these remained low until 6 months. A decrease in the activities of retinaldehyde oxidase, retinaldehyde reductase and retinol dehydrogenase was also seen in intestine from cirrhotic rats. Conclusion:, These results suggest that altered retinoid metabolism in the intestine of cirrhotic rats might have an influence on changes in intestinal epithelial cell differentiation, seen in liver cirrhosis. [source]


Overview of retinoid metabolism and function

DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006
Rune Blomhoff
Abstract Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all- trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all- trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11- cis -retinal is isomerized to all- trans -retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all- trans retinol to all- trans retinal and all- trans retinoic acid, and esterification of all- trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all- trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 606,630, 2006 [source]


Analysis of the NADH-dependent retinaldehyde reductase activity of amphioxus retinol dehydrogenase enzymes enhances our understanding of the evolution of the retinol dehydrogenase family

FEBS JOURNAL, Issue 14 2007
Diana Dalfó
In vertebrates, multiple microsomal retinol dehydrogenases are involved in reversible retinol/retinal interconversion, thereby controlling retinoid metabolism and retinoic acid availability. The physiologic functions of these enzymes are not, however, fully understood, as each vertebrate form has several, usually overlapping, biochemical roles. Within this context, amphioxus, a group of chordates that are simpler, at both the functional and genomic levels, than vertebrates, provides a suitable evolutionary model for comparative studies of retinol dehydrogenase enzymes. In a previous study, we identified two amphioxus enzymes, Branchiostoma floridae retinol dehydrogenase 1 and retinol dehydrogenase 2, both candidates to be the cephalochordate orthologs of the vertebrate retinol dehydrogenase enzymes. We have now proceeded to characterize these amphioxus enzymes. Kinetic studies have revealed that retinol dehydrogenase 1 and retinol dehydrogenase 2 are microsomal proteins that catalyze the reduction of all- trans -retinaldehyde using NADH as cofactor, a remarkable combination of substrate and cofactor preferences. Moreover, evolutionary analysis, including the amphioxus sequences, indicates that Rdh genes were extensively duplicated after cephalochordate divergence, leading to the gene cluster organization found in several mammalian species. Overall, our data provide an evolutionary reference with which to better understand the origin, activity and evolution of retinol dehydrogenase enzymes. [source]


The specificity of alcohol dehydrogenase with cis -retinoids

FEBS JOURNAL, Issue 9 2004
Activity with 11- cis -retinol, localization in retina
Studies in knockout mice support the involvement of alcohol dehydrogenases ADH1 and ADH4 in retinoid metabolism, although kinetics with retinoids are not known for the mouse enzymes. Moreover, a role of alcohol dehydrogenase (ADH) in the eye retinoid interconversions cannot be ascertained due to the lack of information on the kinetics with 11- cis -retinoids. We report here the kinetics of human ADH1B1, ADH1B2, ADH4, and mouse ADH1 and ADH4 with all- trans -, 7- cis -, 9- cis -, 11- cis - and 13- cis -isomers of retinol and retinal. These retinoids are substrates for all enzymes tested, except the 13- cis isomers which are not used by ADH1. In general, human and mouse ADH4 exhibit similar activity, higher than that of ADH1, while mouse ADH1 is more efficient than the homologous human enzymes. All tested ADHs use 11- cis -retinoids efficiently. ADH4 shows much higher kcat/Km values for 11- cis -retinol oxidation than for 11- cis -retinal reduction, a unique property among mammalian ADHs for any alcohol/aldehyde substrate pair. Docking simulations and the kinetic properties of the human ADH4 M141L mutant demonstrated that residue 141, in the middle region of the active site, is essential for such ADH4 specificity. The distinct kinetics of ADH4 with 11- cis -retinol, its wide specificity with retinol isomers and its immunolocalization in several retinal cell layers, including pigment epithelium, support a role of this enzyme in the various retinol oxidations that occur in the retina. Cytosolic ADH4 activity may complement the isomer-specific microsomal enzymes involved in photopigment regeneration and retinoic acid synthesis. [source]


Retinoid metabolism in the small intestine during development of liver cirrhosis

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 5 2009
Sathish Kumar Natarajan
Abstract Background and Aims:, Retinoids are important mediators of cellular differentiation and proliferation in various epithelia of the body including the small intestine. Though alterations in intestinal epithelial cell proliferation have been noted in liver cirrhosis, mechanisms involved in the process are not well understood. This study examined the levels of various retinoids and retinoid-metabolizing enzymes in the small intestine during development of liver cirrhosis. Methods:, Four groups of animals were used (control, phenobarbitone control, thioacetamide and carbon tetrachloride treatment). Twice-weekly intragastric or i.p. administration of carbon tetrachloride or thioacetamide, respectively, produced liver cirrhosis after 3 months, which was confirmed through histology and serum markers. Retinoid levels were measured by high-performance liquid chromatography. Results:, A decrease in the levels of retinal, retinoic acid and retinol was evident in the intestine by 3 months, when cirrhosis was evident histologically, and these remained low until 6 months. A decrease in the activities of retinaldehyde oxidase, retinaldehyde reductase and retinol dehydrogenase was also seen in intestine from cirrhotic rats. Conclusion:, These results suggest that altered retinoid metabolism in the intestine of cirrhotic rats might have an influence on changes in intestinal epithelial cell differentiation, seen in liver cirrhosis. [source]


A Gene Knockout Corroborates the Integral Function of Cellular Retinol-binding Protein in Retinoid Metabolism

NUTRITION REVIEWS, Issue 8 2000
Joseph L. Napoli Ph.D.
Continually expanding evidence has moved inexorably toward establishing key functions for cellular retinol-binding protein (CRBP) in retinoid metabolism. These experimental data integrate into a model of CRBP as a chaperone that protects retinol from the cellular milieu and interacts with certain retinoid-metabolizing enzymes. Mutant mice with an inactivated CRBP gene show decreased liver retinyl ester storage, a shorter elimination half-life of liver retinoids, and predisposition to vitamin A deficiency. No morphologic phenotype was observed until vitamin A was exhausted. Although the mechanisms underlying diminished vitamin A in the CRBP-null mice have not been elucidated, the observations support the model of CRBP as a chaperone of retinoid metabolism. [source]