Retinoic Acid (retinoic + acid)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Retinoic Acid

  • all-tran retinoic acid
  • cis retinoic acid
  • trans retinoic acid

  • Terms modified by Retinoic Acid

  • retinoic acid receptor
  • retinoic acid signaling
  • retinoic acid treatment

  • Selected Abstracts


    New, Regioselective, One-Pot Synthesis of (all- E)-Retinoic Acid and Analogues from Enaminodiester Synthons

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2003
    Dominique Cartier
    Abstract A one-pot synthesis of (all- E)-retinoic acid and related compounds from new enamino diester synthons is described. The enamino diesters was produced nearly quantitatively from methyl propylidene- and isopropylidenemalonate and DMF,DMA. This easy process allowed retinoic acid to be produced in 1 d and appeared advantageous to current industrial syntheses. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


    Evaluation of the pharmacokinetics of All- Trans -Retinoic Acid (ATRA) in wistar rats after intravenous administration of ATRA loaded into tributyrin submicron emulsion and its cellular activity on caco-2 and HepG2 cell lines

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2008
    Jie Su
    Abstract The pharmacokinetics of all- trans -retinoic acid (ATRA), an anti-cancer drug was highly variable due to its poor aqueous solubility. In this study, we investigated the pharmacokinetics of ATRA in male Wistar rats following intravenous administration of the ATRA loaded tributyrin emulsion. In vitro, the ATRA emulsion was proved binding to apolipoprotein(s). In vivo, the clearance of ATRA was significantly reduced by formulating into the tributyrin emulsion, leading to higher AUCs. Co-administration with 17,-ethynylestradiol, a compound known to upregulate the activity of low-density lipoprotein receptors in tissues, significantly increased the Ke, V, and CL of ATRA. The variation of plasma AUCs after administering the ATRA emulsion to the healthy rats was two times less than that after the ATRA solution. The IC50 in ATRA of the ATRA emulsion for the Caco-2 carcinoma cells was 3.8 µg/mL lower than 6 µg/mL of the ATRA solution. The IC50 of the emulsion for the HepG2 carcinoma cells was 2.8 µg/mL, while IC50 was not achieved with the ATRA solution over the test concentration range. The finding indicated that the tributyrin emulsion could be used as a carrier for ATRA and enhances the drug effect by reducing the clearance and increasing the in vitro activity. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:2844,2853, 2008 [source]


    Retinoic Acid Homeostasis: Retinoic Acid Regulates Liver Retinol Esterification As Well As Its Own Catabolic Oxidation in Liver

    NUTRITION REVIEWS, Issue 12 2001
    George Wolf D.Phil
    Retinol is stored in liver in the form of its esters. The retinol-esterifying enzyme lecithimretinol acyltransferase (LRAT) catalyzes the conversion of retinol into its storage form. Expression of the LRAT mRNA is induced by retinoic acid (RA), or by dietary vitamin A, and is downregulated upon vitamin A depletion. RA also induces the expression in liver of the mRNA for CYP26, the enzyme that disposes of excess RA by oxidizing RA to 4-oxo-RA. CYP26 is downregulated upon vitamin A depletion. [source]


    All- Trans Retinoic Acid (Atra) and Tranexamic Acid: A Potentially Fatal Combination In Acute Promyelocytic Leukaemia

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2000
    J. E. Brown
    First page of article [source]


    Retinoic acid is a negative physiological regulator of N-cadherin during early avian heart morphogenesis

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2009
    Mahmoud Romeih
    The vitamin A-deficient (VAD) early avian embryo has a grossly abnormal cardiovascular system that is rescued by treating the embryo with the vitamin A-active form, retinoic acid (RA). Here we examine the role of N-cadherin (N-cad) in RA-regulated early cardiovascular morphogenesis. N-cad mRNA and protein are expressed globally in the presomite through HH14 normal and VAD quail embryos. The expression in VAD embryos prior to HH10 is significantly higher than that in normal embryos. Functional analyses of the N-cad overproducing VAD embryos reveal N-cad involvement in the RA-regulated cardiovascular development and suggest that N-cad expression may be mediated by Msx1. We provide evidence that in the early avian embryo, endogenous RA is a negative physiological regulator of N-cad. We hypothesize that a critical endogenous level of N-cad is needed for normal early cardiovascular morphogenesis to occur and that this level is ensured by stage-specific, developmentally regulated RA signaling. [source]


    Retinoic acid induces CDK inhibitors and growth arrest specific (Gas) genes in neural crest cells

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2005
    Linping Wang
    Retinoic acid (RA), the active metabolite of vitamin A, regulates cellular growth and differentiation during embryonic development. In excess, this vitamin is also highly teratogenic to animals and humans. The neural crest is particularly sensitive to RA, and high levels adversely affect migration, proliferation and cell death. We investigated potential gene targets of RA associated with neural crest proliferation by determining RA-mediated changes in gene expression over time, using microarrays. Statistical analysis of the top ranked RA-regulated genes identified modest changes in multiple genes previously associated with cell cycle control and proliferation including the cyclin-dependent kinase inhibitors Cdkn1a (p21), Cdkn2b (p15INK4b), and Gas3/PMP22. The expression of p21 and p15INK4b contribute to decreased proliferation by blocking cell cycle progression at G1-S. This checkpoint is pivotal to decisions regulating proliferation, apoptosis, or differentiation. We have also confirmed the overexpression of Gas3/PMP22 in RA-treated neural crests, which is associated with cytoskeletal changes and increased apoptosis. Our results suggest that increases in multiple components of diverse regulatory pathways have an overall cumulative effect on cellular decisions. This heterogeneity contributes to the pleiotropic effects of RA, specifically those affecting proliferation and cell death. [source]


    Gene expression profiles of lens regeneration and development in Xenopus laevis

    DEVELOPMENTAL DYNAMICS, Issue 9 2009
    Erica L. Malloch
    Abstract Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected. Developmental Dynamics 238:2340,2356, 2009. © 2009 Wiley-Liss, Inc. [source]


    Retinoic acid signaling is required for proper morphogenesis of mammary gland

    DEVELOPMENTAL DYNAMICS, Issue 4 2005
    Y. Alan Wang
    Abstract Retinoic acid (RA), a bioactive chemical compound synthesized from dietary derived vitamin A, has been successfully used as a chemopreventive and chemotherapeutic agent through the regulation of cell proliferation, differentiation, and apoptosis acting via the retinoic acid receptors. Despite two decades of research on the function of retinoic acid, the physiological role of RA in mammary gland development is still not well characterized. In this report, we demonstrate that RA is required for proper morphogenesis of mouse mammary gland in a novel transgenic mouse model system. It was found that inhibition of RA signaling in vivo leads to excessive mammary ductal morphogenesis through upregulation of cyclin D1 and MMP-3 expression. Furthermore, we show that the transgene-induced excessive branching morphogenesis could be reversed by treatment with RA, demonstrating the direct physiological effect of RA signaling in vivo. In addition, we demonstrate that excessive branching morphogenesis in the transgenic mammary gland are cell-autonomous and do not require stromal signals within the transgenic mammary gland. Finally, we provide evidence suggesting that retinoic acid signaling is required for appropriate mammary gland differentiation. Collectively, our data indicate for the first time that retinoic acid signaling is required to maintain the homeostasis of mammary gland morphogenesis. Developmental Dynamics 234:892,899, 2005. © 2005 Wiley-Liss, Inc. [source]


    Microarray analysis of retinoid-dependent gene activity during rat embryogenesis: Increased collagen fibril production in a model of retinoid insufficiency

    DEVELOPMENTAL DYNAMICS, Issue 4 2004
    George R. Flentke
    Abstract Retinoic acid (RA) is an essential mediator of embryogenesis. Some, but not all, of its targets have been identified. We previously developed a rat model of gestational retinoid deficiency (RAD; Power et al. [1999] Dev. Dyn. 216:469,480) and generated embryos with developmental impairments that closely resemble genetic and dietary models of retinoid insufficiency. Here, we used microarray analysis and expression profiling to identify 88 transcripts whose abundance was altered under conditions of retinoid insufficiency, as compared with normal embryos. Among these, the induction by RAD of genes involved in collagen I synthesis (COL1A1, IA2 and VA2, prolyl-4-hydroxylase-,1) and protein galactosylation (galactokinase, ABO galactosyltransferase, UDP-galactose transporter-related protein) was especially noteworthy because extracellular matrix regulates many developmental events. We also identified several genes involved with stress responses (cathepsin H, UBC2E, IGFBP3, smoothelin). Real-time polymerase chain reaction analysis of selected candidates revealed excellent agreement with the array findings. Further validation came from the demonstration that these genes were similarly dysregulated in two genetic models of retinoid insufficiency, the retinol binding protein null-mutant embryo and the Raldh2 null-mutant embryo. In situ hybridization of RAD embryos found increased collagen IA1 and IGFBP3 mRNA within the connective mesenchyme and vasculature, respectively, and a failure to repress the growth factor midkine within the RAD neural tube. Many of the identified genes were not known previously to respond to retinoid status and will provide new insights to retinoid roles and to the consequences of retinoid insufficiency. Developmental Dynamics 229:886,898, 2004. © 2004 Wiley-Liss, Inc. [source]


    Retinoic acid, a regeneration-inducing molecule

    DEVELOPMENTAL DYNAMICS, Issue 2 2003
    Malcolm Maden
    Abstract Retinoic acid (RA) is the biologically active metabolite of vitamin A. It is a low molecular weight, lipophilic molecule that acts on the nucleus to induce gene transcription. In amphibians and mammals, it induces the regeneration of several tissues and organs and these examples are reviewed here. RA induces the "super-regeneration" of organs that can already regenerate such as the urodele amphibian limb by respecifying positional information in the limb. In organs that cannot normally regenerate such as the adult mammalian lung, RA induces the complete regeneration of alveoli that have been destroyed by various noxious treatments. In the mammalian central nervous system (CNS), which is another tissue that cannot regenerate, RA does not induce neurite outgrowth as it does in the embryonic CNS, because one of the retinoic acid receptors, RAR,2, is not up-regulated. When RAR,2 is transfected into the adult spinal cord in vitro, then neurite outgrowth is stimulated. In all these cases, RA is required for the development of the organ, in the first place suggesting that the same gene pathways are likely to be used for both development and regeneration. This suggestion, therefore, might serve as a strategy for identifying potential tissue or organ targets that have the capacity to be stimulated to regenerate. Developmental Dynamics 226:237,244, 2003.© 2003 Wiley-Liss, Inc. [source]


    Retinoids and nonvertebrate chordate development

    DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006
    Shigeki Fujiwara
    Abstract Retinoic acid (RA) is required for the differentiation and morphogenesis of chordate-specific features, such as the antero-posterior regionalization of the dorsal hollow nerve cord and neural crest cells. RA receptors (RARs) have been reported exclusively in chordates, suggesting that the acquisition of the RAR gene was important for chordate evolution. A scenario is presented here for the establishment of an RAR-mediated developmental regulatory system during the course of chordate evolution. In the common chordate ancestor, RAR came to control the spatial expression pattern of Hox genes in the ectoderm and endoderm along the antero-posterior axis. In these germ layers, RA was required for the differentiation of epidermal sensory neurons and the morphogenesis of pharyngeal gill slits, respectively. As the diffuse epidermal nerve net in the chordate ancestor became centralized to form the dorsal nerve cord, the epidermal Hox expression pattern was carried into the central nervous system. Because the Hox code here came to specify neuronal identity along the antero-posterior axis, RA became inextricably linked to the antero-posterior patterning of the chordate central nervous system. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 645,652, 2006 [source]


    Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
    P. J. McCaffery
    Abstract Retinoic acid (RA) is essential for both embryonic and adult growth, activating gene transcription via specific nuclear receptors. It is generated, via a retinaldehyde intermediate, from retinol (vitamin A). RA levels require precise regulation by controlled synthesis and catabolism, and when RA concentrations deviate from normal, in either direction, abnormal growth and development occurs. This review describes: (i) how the pattern of RA metabolic enzymes controls the actions of RA; and (ii) the type of abnormalities that result when this pattern breaks down. Examples are given of RA control of the anterior/posterior axis of the hindbrain, the dorsal/ventral axis of the spinal cord, as well as certain sex-specific segments of the spinal cord, using varied animal models including mouse, quail and mosquitofish. These functions are highly sensitive to abnormal changes in RA concentration. In rodents, the control of neural patterning and differentiation are disrupted when RA concentrations are lowered, whereas inappropriately high concentrations of RA result in abnormal development of cerebellum and hindbrain nuclei. The latter parallels the malformations seen in the human embryo exposed to RA due to treatment of the mother with the acne drug Accutane (13- cis RA) and, in cases where the child survives beyond birth, a particular set of behavioural anomalies can be described. Even the adult brain may be susceptible to an imbalance of RA, particularly the hippocampus. This report shows how the properties of RA as a neural induction agent and organizer of segmentation can explain the consequences of RA depletion and overexpression. [source]


    Retinoic acid regulates the expression of PBX1, PBX2, and PBX3 in P19 cells both transcriptionally and post-translationally

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2004
    Pu Qin
    Abstract Pre-B cell leukemia transcription factors (PBXs) are important co-factors for the transcriptional regulation mediated by a number of Hox proteins during embryonic development. It was previously shown that the expression of several Pbx genes is elevated in mouse embryo limb buds and embryonal carcinoma P19 cells upon retinoic acid (RA) treatment although the mechanism of this induction is not well understood. In this report, we demonstrate that PBX1a, PBX1b, PBX2, and PBX3 mRNAs and PBX1/2/3 proteins are induced during endodermal and neuronal differentiation of P19 cells in a RAR-dependent subtype-unspecific manner following RA treatment. The increases in both PBX1 mRNA and PBX3 mRNA levels are secondary responses to RA treatment requiring new proteins synthesis while the increase in PBX2 mRNA is a primary response. The RA-dependent increases in PBX1 mRNA, PBX2 mRNA, and PBX3 mRNA levels are likely to be transcriptionally regulated since the stability of these mRNAs does not change. In addition, the half-lives of PBX1/2/3 proteins are significantly extended by RA treatment. Two possible mechanisms could contribute to the stabilization of PBX proteins: PBX proteins associate with RA-dependent increased levels of MEIS proteins, and RA may decrease the proteasome dependent degradation of PBX proteins. © 2004 Wiley-Liss, Inc. [source]


    Retinoic acid induces expression of the interleukin-1, gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2002
    Limin Liu
    Retinoic acid (RA) and its derivatives inhibit the proliferation of normal human mammary epithelial cells (HMEC) and some breast carcinoma lines by mechanisms which are not fully understood. To identify genes that mediate RA-induced cell growth arrest, an HMEC cDNA library was synthesized and subtractive screening was performed. We identified the interleukin-1, (IL-1,) gene as an RA induced gene in HMEC. Northern blot analyses showed that the IL-1, gene was up-regulated as early as 2 h after RA treatment. Results from the treatment of HMEC with cycloheximide and actinomycin D indicated that the regulation of the IL-1, gene by RA occurred at the transcriptional level and that the IL-1, gene is a direct, downstream target gene of RA. To evaluate the effects of IL-1, on cell proliferation, the proliferation of HMEC was measured in the presence of RA or IL-1,, or both. Either RA or IL-1, could significantly inhibit the proliferation of HMEC. However, the addition of soluble IL-1 receptor antagonist (sIL-1ra) to the cell culture medium did not block RA-induced HMEC growth inhibition, whereas sIL-1ra did block the growth inhibition of HMEC by IL-1,. IL-1, expression was not observed in the three carcinoma cell lines, MCF-7, MDA-MB-231, and MDA-MB-468, as compared to the HMEC. Growth curves of the breast carcinoma cell lines showed strong inhibitory effects of RA and IL-1, on the growth of the estrogen receptor (ER) positive MCF-7 cell line, but only a small effect on the ER negative MDA-MB-231 cells. The expression of the IL-1, gene was also transcriptionally activated by RA in normal epithelial cells of prostate and oral cavity. Our results suggest that: (a) the IL-1, gene is a primary target of RA receptors in HMEC; (b) the enhanced expression of the IL-1, gene does not mediate the RA-induced growth arrest of HMEC; and (c) the expression of the IL-1, gene is low or absent in all three human breast carcinoma cell lines examined, but the defect in the IL-1, signaling pathway may be different in ER positive versus ER negative carcinoma cells. © 2002 Wiley-Liss, Inc. [source]


    Molecular interactions of the neuronal GPI-anchored lipocalin Lazarillo

    JOURNAL OF MOLECULAR RECOGNITION, Issue 5 2008
    Diego Sanchez
    Abstract Lazarillo, a glycoprotein involved in axon growth and guidance in the grasshopper embryo, is the only member of the lipocalin family that is attached to the cell surface by a GPI anchor. Recently, the study of Lazarillo homologous genes in Drosophila and mouse has revealed new functions in the regulation of lifespan, stress resistance and neurodegeneration. Here we report an analysis of biochemical properties of Lazarillo to gain insight into the molecular basis of its physiological function. Recombinant forms of the grasshopper protein were expressed in two different systems to test: (1) potential binding of several hydrophobic ligands; (2) protein,protein homophilic interactions; and (3) whether interaction with the function-blocking mAb 10E6 interferes with ligand binding. We tested 10 candidate ligands (retinoic acid, heme, bilirubin, biliverdin, ecdysterone, juvenile hormone, farnesol, arachidonic acid, linoleic acid and palmitic acid), and monitored binding using electrophoretic mobility shift, absorbance spectrum, and fluorimetry assays. Our work indicates binding to heme and retinoic acid, resulting in increased electrophoretic mobility, as well as to fatty acids, resulting in multimerization. Retinoic acid and fatty acids binding were confirmed by fluorescence titration, and heme binding was confirmed with absorbance spectrum assays. We demonstrate that Lazarillo oligomerizes in solution and can form clusters in the plasma membrane when expressed and GPI-anchored to the cell surface, however it is unable to mediate cell,cell adhesion. Finally, by ligand-mAb competition experiments we show that ligand-binding alone cannot be the key factor for Lazarillo to perform its function during axonal growth in the grasshopper embryo. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    9-Cis-retinoic acid reduces ischemic brain injury in rodents via bone morphogenetic protein

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2009
    Hui Shen
    Abstract Retinoic acid (RA), a biologically active derivative of vitamin A, has protective effects against damage caused by H2O2 or oxygen-glucose deprivation in mesangial and PC12 cells. In cultured human osteosarcoma cells, RA enhances the expression of bone morphogenetic protein-7 (BMP7), a trophic factor that reduces ischemia- or neurotoxin-mediated neurodegeneration in vivo. The purpose of this study is to examine whether RA reduces ischemic brain injury through a BMP7 mechanism. We found that intracerebroventricular administration of 9-cis-retinoic acid (9cRA) enhanced BMP7 mRNA expression, detected by RT-PCR, in rat cerebral cortex at 24 hr after injection. Rats were also subjected to transient focal ischemia induced by ligation of the middle cerebral artery (MCA) at 1 day after 9cRA injection. Pretreatment with 9cRA increased locomotor activity and attenuated neurological deficits 2 days after MCA ligation. 9cRA also reduced cerebral infarction and TUNEL labeling. These protective responses were antagonized by the BMP antagonist noggin given 1 day after 9cRA injection. Taken together, our data suggest that 9cRA has protective effects against ischemia-induced injury, and these effects involve BMPs. © 2008 Wiley-Liss, Inc. [source]


    Presenilin 1 mediates retinoic acid-induced differentiation of SH-SY5Y cells through facilitation of Wnt signaling

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2003
    Kengo Uemura
    Abstract Presenilin 1 interacts with ,-catenin, an essential component of the Wnt signaling pathway. To elucidate the role of presenilin 1-,-catenin interaction in neuronal differentiation, we established SH-SY5Y cells stably expressing wild-type presenilin 1, P117L mutant presenilin 1, which is linked to the early-onset familial form of Alzheimer's disease, and D385A mutant presenilin 1, which has no aspartyl proteinase activity. We demonstrate that SH-SY5Y cells stably expressing D385A mutant presenilin 1 failed to differentiate in response to retinoic acid treatment. Retinoic acid caused an increase in nuclear ,-catenin levels in SH-SY5Y cells, which was followed by an increase in cyclin D1 protein levels. Abnormal cellular accumulation of ,-catenin was observed in D385A mutant transfected cells, whereas nuclear ,-catenin and cellular cyclin D1 levels failed to increase. Conversely, SH-SY5Y cells expressing the P117L mutant differentiated normally and showed increased nuclear ,-catenin and cellular cyclin D1 levels. These findings suggest that neuronal differentiation of SH-SY5Y cells involves the Wnt signaling pathway and that presenilin 1 plays a crucial role in Wnt signal transduction by regulating the nuclear translocation of ,-catenin. © 2003 Wiley-Liss, Inc. [source]


    Retinoic acid is a potential negative regulator for differentiation of human periodontal ligament cells

    JOURNAL OF PERIODONTAL RESEARCH, Issue 6 2005
    Natsuko Shibuya
    Background and objectives:, Retinoic acid (RA) exerts a wide variety of effects on development, cellular differentiation and homeostasis in various tissues. However, little is known about the effects of RA on the differentiation of periodontal ligament cells. In this study, we investigated whether RA can affect the dexamethasone-induced differentiation of periodontal ligament cells. Methods and results:, Human periodontal ligament cells were differentiated via culturing in the presence of dexamethasone, ascorbic acid, and ,-glycerophosphate for mineralized nodule formation, as characterized by von Kossa staining. Continuous treatment with all- trans -RA inhibited the mineralization in a dose-dependent manner, with complete inhibition over 1 µm RA. Other RA analogs, 9- cis -RA and 13- cis -RA, were also effective. Furthermore, addition of RA for just the first 4 days completely inhibited the mineralization; however, as RA was added at later stages of culture, the inhibitory effect was diminished, suggesting that RA had a phase-dependent inhibition of mineralization. RA receptor (RAR)-, agonist (AM-580), but not retinoid X receptor agonist (methoprene acid), inhibited the mineralization, and reverse transcription,polymerase chain reaction analysis revealed that RAR-, was expressed on the cells, suggesting that RAR-, was involved in the inhibitory mechanism. This inhibition was accompanied by inhibition of alkaline phosphatase activity; however, neither expression of platelet-derived growth factor (PDGF) receptor-,, PDGF receptor-,, or epidermal growth factor (EGF) receptor, nor phosphorylation of extracellular signal-regulated kinases triggered by PDGF-ascorbic acid or PDGF-BB was changed, as assessed by flow cytometry or western blot analyses. Conclusions:, These findings suggest that RA is a potential negative regulator for differentiation of human periodontal ligament cells. [source]


    Ethanol Impairs Activation of Retinoic Acid Receptors in Cerebellar Granule Cells in a Rodent Model of Fetal Alcohol Spectrum Disorders

    ALCOHOLISM, Issue 5 2010
    Ambrish Kumar
    Background:, Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. Methods:, The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. Results:, Findings from these studies demonstrated that ethanol exposure reduced the expression of RAR,/, while it increased the expression of RXR,/, in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. Conclusion:, For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects caused by excessive ethanol exposure, such as in Fetal Alcohol Spectrum Disorders. [source]


    Improved efficacy and tolerability of retinoic acid in acne vulgaris: a new topical formulation with cyclodextrin complex ,

    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 4 2004
    RY Anadolu
    ABSTRACT Objectives, Retinoic acid (RA) has long been used, both topically and systemically, for disorders of keratinization, acne and related disorders. In the present study, the efficacy and tolerability of topical RA prepared as a cyclodextrin beta complex (,-CD) is investigated in 66 acne vulgaris patients. Methods, This randomized, double-blind, placebo-controlled study compares nightly topical application of RA/,-CD complex hydrogel formulation (0.025%), RA/,-CD complex in moisturizing base (0.025%), hydrogel base, moisturizer base or a commercial RA gel (0.05%) in acne vulgaris patients. Improvement of acne was assessed using a 5-point improvement scale and by measuring sebum and moisture content of the skin using an SM 810 sebumeter/corneometer. Results, After 3 months of treatment, mean scores of acne improvement on the 5-point scale were 4 with the RA/,-CD complex hydrogel formulation, 4.1 with the RA/,-CD complex in moisturizing base, 1.2 with hydrogel placebo base, 1.1 with moisturizer placebo base and 3 with the commercial RA product. All patients treated with the commercial product experienced local side-effects. One patient discontinued due to severe irritation. None of the patients treated with the RA/,-CD complex in the moisturizing base and hydrogel formulation experienced significant local irritation, although the sebum content of the skin decreased after application of the RA/,-CD preparations. This change was not significant compared to controls. The moisture content of the skin was better preserved in the group treated with the RA/,-CD complex in the moisturizing base. Conclusion, The topical RA/,-CD complex, in hydrogel and moisturizing base, was more effective than the twice concentrated commercial RA product. There were few topical side-effects with this new formulation, which increases patient compliance. Topical RA/,-CD (0.025% RA) did not significantly reduce sebum secretion but may help to preserve optimum epidermal moisture content with the proper base formulation. This is the first study in the literature reporting efficacy and tolerability of the topical RA/,-CD complex in acne vulgaris. We conclude that the topical RA/,-CD complex displays an improved efficacy and tolerability profile and is an effective treatment alternative for acne vulgaris. [source]


    Retinoic acid signalling induces the differentiation of mouse fetal liver-derived hepatic progenitor cells

    LIVER INTERNATIONAL, Issue 10 2009
    Jiayi Huang
    Abstract Background: Hepatic progenitor cells (HPCs) can be isolated from fetal liver and extrahepatic tissues. Retinoic acid (RA) signalling plays an important role in development, although the role of RA signalling in liver-specific progenitors is poorly understood. Aims: We sought to determine the role of RA in regulating hepatic differentiation. Methods: RNA was isolated from liver tissues of various developmental stages. Liver marker expression was assessed by reverse transcriptase-polymerase chain reaction and immunofluorescence staining. Reversibly immortalized HPCs derived from mouse embryonic day 14.5 (E14.5) liver (aka, HP14.5) were established. Albumin promoter-driven reporter (Alb-GLuc) was used to monitor hepatic differentiation. Glycogen synthesis was assayed as a marker for terminal hepatic differentiation. Results: Retinoic acid receptor (RAR)-,, retinoid X receptor (RXR)-, and RXR-, expressed in E12.5 to postnatal day 28 liver samples. Expression of RAR-, and RXR-, was low perinatally, whereas RAR-, was undetectable in prenatal tissues and increased postnatally. Retinal dehydrogenase 1 and 2 (Raldh1 and Raldh2) were expressed in all tissues, while Raldh3 was weakly expressed in prenatal samples but was readily detected postnatally. Nuclear receptor corepressors were highly expressed in all tissues, while expression of nuclear co-activators decreased in perinatal tissues and increased after birth. HP14.5 cells expressed high levels of early liver stem cell markers. Expression of RA signalling components and coregulators was readily detected in HP14.5. RA was shown to induce Alb-GLuc activity and late hepatocyte markers. RA was further shown to induce glycogen synthesis in HP14.5 cells, an important function of mature hepatocytes. Conclusions: Our results strongly suggest that RA signalling may play an important role in regulating hepatic differentiation. [source]


    Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids

    HEPATOLOGY, Issue 1 2004
    Karine Hellemans
    Activation of hepatic stellate cells (HSC) is a central event in the pathogenesis of liver fibrosis during chronic liver injury. We examined the expression of retinoic acid (RAR) and retinoid X receptors (RXR) during HSC activation and evaluated the influence of natural and synthetic retinoic acids (RA) on the phenotype of culture-activated HSC. The expression of the major RAR/RXR subtypes and isoforms was analyzed by Northern hybridization. Presence of functional receptor proteins was established by gel shift analysis. Retinoic acids, RAR, and RXR selective agonists and an RAR antagonist were used to evaluate the effects of retinoid signalling on matrix synthesis by Northern blotting and immunoprecipitation, and on cell proliferation by BrdU incorporation. The 9- cisRA and synthetic RXR agonists reduced HSC proliferation and synthesis of collagen I and fibronectin. All- trans RA and RAR agonists both reduced the synthesis of collagen I, collagen III, and fibronectin, but showed a different effect on cell proliferation. Synthetic RAR agonists did not affect HSC proliferation, indicating that ATRA inhibits cell growth independent of its interaction with RARs. In contrast, RAR specific antagonists enhance HSC proliferation and demonstrate that RARs control proliferation in a negative way. In conclusion, natural RAs and synthetic RAR or RXR specific ligands exert differential effects on activated HSC. Our observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or to animals subjected to fibrogenic stimuli. (HEPATOLOGY 2004;39:97,108.) [source]


    Vascular endothelial growth factor in edematous mouse embryos induced by retinoic acid in utero

    CONGENITAL ANOMALIES, Issue 2 2001
    Yoshiko Yasuda
    ABSTRACT, Vascular endothelial growth factor (VEGF) is induced by hypoxic environment and contributes to vascular formation in both developing embryos and adults. Exogenous retinoic acid (RA) induces avascular yolk sacs with anemic stunted embryos of day 9 and 10 of gestation when RA is given to pregnant mice on day 6, 6.5 or 7 of pregnancy (Yasuda et al., 1996). We undertook the present studies to find out whether VEGF is activated and plays any role in those RA-exposed embryos. Embryos were obtained from dams given 60 mg/kg of RA on day 6 or 7 of pregnancy and sacrificed three days later. Most RA-exposed embryos showed edematous swelling without prominent vascular nets, but had beating heart tubes on day 9 and day 10 of gestation. Microscopic examination of developing tissue components showed various degrees of degeneration, and distension of the dorsal aorta when the body cavity was dosed. Northern blot analysis revealed expression of VEGF mRNA in the RA-exposed and control embryos. The highest expression of VEGF mRNA was seen in the embryos of day 10 exposed to RA on day 7, and these embryos had a significantly lower ATP content than did the controls (p < 0.01). Immunoreactive VEGF was detectable in both experimental and control embryos; in the former it was especially visible in the distended neuroepithelium, endothelium and membranes. These VEGF-immunoreactive regions also expressed another permeability factor, bradykinin. These findings suggest that VEGF upregulated by hypoxic conditions in edematous embryos induced by RA exposure in utero acts as hyperpermeability. [source]


    Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cells

    CYTOSKELETON, Issue 4 2003
    Sophie Launay
    Abstract The Wiskott-Aldrich Syndrome (WAS) is a disease associated with mutations in the WAS gene and characterised by developmental defects in haematopoietic cells such as myeloid cells. The Wiskott-Aldrich Syndrome protein (WASP)-family includes Scar1 and WASP, which are key regulators of actin reorganization in motile cells. To understand the roles of Scar1 and WASP in myeloid cells and their cytoskeletal control in haematopoietic tissues, we have explored their expression during differentiation of the promyeloid cell line HL-60. Undifferentiated HL-60 cells expressed Scar1 and WASP, and differentiation to neutrophils, induced by retinoic acid or non-retinoid agent treatments, led to a decrease in the level of expression of Scar1, whereas WASP expression was unaffected. Differentiation to monocytes/macrophages, induced by phorbol ester treatment, resulted in a decreased expression of both proteins in the adherent mature cells. Vitamin D3 treatment or cytochalasin D in combination with PMA treatment did not affect WASP expression suggesting that adhesion and cytoskeletal integrity were both essential to regulate WASP expression. Scar1 expression was regulated by differentiation, adhesion, and cytoskeletal integrity. Recently, WASP was found to colocalize with actin in the podosomes. In contrast, we show here that Scar1 did not localize with the podosomes in mature monocytes/macrophages. These observations show for the first time that modulation of Scar1 and WASP expression is a component of the differentiation program of myeloid precursors and indicate that WASP and Scar1 have different roles in mature myeloid cells. Cell Motil. Cytoskeleton 54:274,285, 2003. © 2003 Wiley-Liss, Inc. [source]


    Treatment of cutaneous T-cell lymphoma with retinoids

    DERMATOLOGIC THERAPY, Issue 5 2006
    Chunlei Zhang
    ABSTRACT:, Retinoids are biologic regulators of differentiation, proliferation, apoptosis, and immune response. Retinoids (all- trans retinoic acid, 13- cis -retinoic acid, and the synthetic analogs isotretinoin, etretinate, and acitretin) have been used for years as monotherapy and/or in combination for treatment of cutaneous T-cell lymphomas (CTCL). Orally administered bexarotene, the first synthetic highly selective retinoid X receptor retinoid to be approved by the Food and Drug Administration for CTCL, was shown to be active against the cutaneous manifestations of all stages of CTCL. The topical gel formulation was also effective for early cutaneous manifestations of CTCL or as an adjunct to systemic or phototherapy. Use of retinoids in future long-term clinical trials and their eventual application in CTCL regiments will require strategies to decrease the side effects of existing retinoids, identify novel receptor subtype-selective retinoids with better therapeutic index, and explore biologically based synergistic combination therapies with other active agents. [source]


    Retinoic acid is a negative physiological regulator of N-cadherin during early avian heart morphogenesis

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2009
    Mahmoud Romeih
    The vitamin A-deficient (VAD) early avian embryo has a grossly abnormal cardiovascular system that is rescued by treating the embryo with the vitamin A-active form, retinoic acid (RA). Here we examine the role of N-cadherin (N-cad) in RA-regulated early cardiovascular morphogenesis. N-cad mRNA and protein are expressed globally in the presomite through HH14 normal and VAD quail embryos. The expression in VAD embryos prior to HH10 is significantly higher than that in normal embryos. Functional analyses of the N-cad overproducing VAD embryos reveal N-cad involvement in the RA-regulated cardiovascular development and suggest that N-cad expression may be mediated by Msx1. We provide evidence that in the early avian embryo, endogenous RA is a negative physiological regulator of N-cad. We hypothesize that a critical endogenous level of N-cad is needed for normal early cardiovascular morphogenesis to occur and that this level is ensured by stage-specific, developmentally regulated RA signaling. [source]


    Retinoic acid affects craniofacial patterning by changing Fgf8 expression in the pharyngeal ectoderm

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 9 2008
    Makoto Abe
    Retinoic acid signaling plays important roles in establishing normal patterning and cellular differentiation during embryonic development. In this study, we show that single administration of retinoic acid at embryonic day 8.5 causes homeotic transformation of the lower jaw into upper jaw-like structures. This homeosis was preceded by downregulation of Fgf8 and Sprouty expression in the proximal domain of the first pharyngeal arch. Downregulation of mesenchymal genes such as Dlx5, Hand2, Tbx1 and Pitx2 was also observed. The oropharynx in retinoic acid-treated embryos was severely constricted. Consistent with this observation, Patched expression in the arch endoderm and mesenchyme was downregulated. Thus, retinoic acid affects the expression of subsets of epithelial and mesenchymal genes, possibly disrupting the regional identity of the pharyngeal arch. [source]


    Identification and characterization of nucleoplasmin 3 as a histone-binding protein in embryonic stem cells

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2008
    Natsuki Motoi
    Embryonic stem (ES) cells are thought to have unique chromatin structures responsible for their capacity for self-renewal and pluripotency. To examine this possibility, we sought nuclear proteins in mouse ES cells that specifically bind to histones using a pull-down assay with synthetic peptides of histone H3 and H4 tail domain as baits. Nuclear proteins preferentially bound to the latter. We identified 45 proteins associated with the histone H4 tail and grouped them into four categories: 10 chromatin remodeling proteins, five histone chaperones, two histone modification-related proteins, and 28 other proteins. mRNA expression levels of 20 proteins selected from these 45 proteins were compared between undifferentiated and retinoic acid (RA)-induced differentiated ES cells. All of the genes were similarly expressed in both states of ES cells, except nucleoplasmin 3 (NPM3) that was expressed at a higher level in the undifferentiated cells. NPM3 proteins were localized in the nucleoli and nuclei of the cells and expression was decreased during RA-induced differentiation. When transfected with NPM3 gene, ES cells significantly increased their proliferation compared with control cells. The present study strongly suggests that NPM3 is a chromatin remodeling protein responsible for the unique chromatin structure and replicative capacity of ES cells. [source]


    Epigenetic regulation of the imprinted U2af1-rs1 gene during retinoic acid-induced differentiation of embryonic stem cells

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2006
    Noelia Andollo
    Epigenetic modifications such as DNA methylation and changes in chromatin structure are changes in the chemical composition or structure of DNA that work by regulating gene expression. Their mechanisms of action have been generally studied in imprinted genes. The present work analyzes the involvement of these mechanisms in the expression of the U2af1-rs1 imprinted gene during the differentiation process of embryonic stem (ES) cells induced by retinoic acid. By DNA digestion with methylation-dependent or independent restriction enzymes and consecutive Southern blot, we have found that methylation of the U2af1-rs1 gene increases in differentiated ES cells and in embryoid bodies. However, northern blot and real-time reverse transcription,polymerase chain reaction analysis showed a higher expression of the U2af1-rs1 gene in differentiated ES cells and in embryoid bodies than in undifferentiated ones. On the other hand, the sensitivity to DNase-I assay demonstrated an open chromatin conformation for differentiated cells with regard to undifferentiated ES cells. Our results suggest that the expression of the U2af1-rs1 gene would be regulated by changes in chromatin structure rather than by DNA methylation during the RA-induced process of differentiation of ES cells. [source]


    Transgenic analysis of the medaka mesp-b enhancer in somitogenesis

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2006
    Harumi Terasaki
    Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity. [source]