Home About us Contact | |||
Retinal Neurogenesis (retinal + neurogenesi)
Selected AbstractsZebrafish dou yan mutation causes patterning defects and extensive cell death in the retinaDEVELOPMENTAL DYNAMICS, Issue 5 2007Anne E. Catalano Abstract The size of an organ is largely determined by the number of cells it contains, which in turn is regulated by two opposing processes, cell proliferation and cell death, however, it is generally not clear how cell proliferation and cell death are coordinated during development. Here, we characterize the zebrafish dou yanmi234 mutation that results in a dramatic reduction of retinal size and a disruption of retinal differentiation and lamination. The retinal size reduction is caused by increased retinal cell death in a non,cell-autonomous manner during early development. The phenotypic defect in dou yanmi234 arises coincident with the onset of retinal neurogenesis and differentiation. Interestingly, unlike many other small eye mutations, the mutation does not increase the level of cell death in the brain, suggesting that the brain and retina use different mechanisms to maintain cell survival. Identification and further study of the dou yan gene will enhance our understanding of the molecular mechanisms regulating retinal cellular homeostasis, i.e., the balance between cell proliferation and cell death. Developmental Dynamics 236:1295,1306, 2007. © 2007 Wiley-Liss, Inc. [source] Proneural gene ash1 promotes amacrine cell production in the chick retinaDEVELOPMENTAL NEUROBIOLOGY, Issue 2-3 2009Weiming Mao Abstract The diverse types of neurons and Müller glia in the vertebrate retina are believed to arise from common progenitor cells. To better understand how neural diversity is achieved during retinal neurogenesis, we examined the function of ash1, a proneural bHLH gene expressed in progenitor cells throughout retinal neurogenesis. Published studies using retinal explant culture derived from knockout mice concluded that ash1 is required for the production of late-born neurons, including bipolar cells. In this study, gain-of-function experiments were carried out in ovo in embryonic chick retina. In the developing chick retina, expression of ash1 temporally overlapped with, but spatially differed from, the expression of ngn2, also a proneural gene expressed in progenitor cells throughout retinal neurogenesis. Retrovirus-driven overexpression of ash1 in the developing chick retina decreased the progenitor population (BrdU+ or expressing ngn2), expanded the amacrine population (AP2,+ or Pax6+), and reduced bipolar (chx10 mRNA+) and Müller glial (vimentin+) populations. Photoreceptor deficiency occurred after the completion of neurogenesis. The number of ganglion cells, which are born first during retinal neurogenesis, remained unchanged. Similar overexpression of ngn2 did not produce discernible changes in retinal neurogenesis, nor in ash1 expression. These results suggest that ash1 promotes the production of amacrine cells and thus may participate in a regulatory network governing neural diversity in the chick retina. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retinaDEVELOPMENTAL NEUROBIOLOGY, Issue 5 2008Ann C. Morris Abstract Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Differential effect of dopamine on mitosis in early postnatal albino and pigmented rat retinaeDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2006Ines Kralj-Hans Abstract Insufficient levels of L -DOPA, released from the retinal pigment epithelium (RPE), in albino animals are considered responsible for the abnormal development of the underlying neural retina. L -DOPA normalizes retinal neurogenesis by reducing levels of cell proliferation either by acting on the cells directly or by being converted into dopamine. Here we report the effects of dopamine on mitosis in early postnatal neural retinae from albino and pigmented rats, using 4D (x, y, z and time) confocal microscopy. Exogenous dopamine significantly prolongs mitosis in retinae from albino, but not pigmented, animals. As fewer cells move into and divide in the ventricular zone (VZ) in the presence of dopamine, we conclude that the overall cell cycle is affected. The D1 receptor blocker, SCH 23390, inhibits these effects. Thus, the differential effects of dopamine on neural retinae from pigmented and albino rats in vitro must result from the activation of D1 receptors, which are present in the retina from birth. Immunohistochemical labeling of D1 receptors shows that the pattern of their distribution is similar between pigmentation phenotypes, but levels of expression may be elevated in albinos. Labeling is most intense in the inner plexiform layer but is present throughout the neuroblastic layer. These findings are discussed in light of previous reports of reduced catecholamine levels in the albino retina. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retinaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2007Yasser Elshatory Abstract The mammalian retina is comprised of six major neuronal cell types and is subdivided into more morphological and physiological subtypes. The transcriptional machinery underlying these subtype fate choices is largely unknown. The LIM-homeodomain protein, Isl1, plays an essential role in central nervous system (CNS) differentiation but its relationship to retinal neurogenesis remains unknown. We report here its dynamic spatiotemporal expression in the mouse retina. Among bipolar interneurons, Isl1 expression commences at postnatal day (P)5 and is later restricted to ON-bipolar cells. The intensity of Isl1 expression is found to segregate the pool of ON-bipolar cells into rod and ON-cone bipolar cells with higher expression in rod bipolar cells. As bipolar cell development proceeds from P5,10 the colocalization of Isl1 and the pan-bipolar cell marker Chx10 reveals the organization of ON-center bipolar cell nuclei to the upper portion of the inner nuclear layer. Further, whereas Isl1 is predominantly a ganglion cell marker prior to embryonic day (E)15.5, at E15.5 and later its expression in nonganglion cells expands. We demonstrate that these Isl1-positive, nonganglion cells acquire the expression of amacrine cell markers embryonically, likely representing nascent cholinergic amacrine cells. Taken together, Isl1 is expressed during the maturation of and is later maintained in retinal ganglion cells and subtypes of amacrine and bipolar cells where it may function in the maintenance of these cells into adulthood. J. Comp. Neurol. 503:182,197, 2007. © 2007 Wiley-Liss, Inc. [source] |