Reticular Thalamic Nucleus (reticular + thalamic_nucleus)

Distribution by Scientific Domains


Selected Abstracts


WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges

EPILEPSIA, Issue 8 2010
Clementina M. Van Rijn
Summary Purpose:, Genetically epileptic WAG/Rij rats develop spontaneous absence-like seizures after 3 months of age. We used WAG/Rij rats to examine whether absence seizures are associated with changes in the expression of type-1 cannabinoid (CB1) receptors. Methods:, Receptor expression was examined by in situ hybridization and western blot analysis in various brain regions of "presymptomatic" 2-month old and "symptomatic" 8-month-old WAG/Rij rats relative to age-matched nonepileptic control rats. Furthermore, we examined whether pharmacologic activation of CB1 receptor affects absence seizures. We recorded spontaneous spike-wave discharges (SWDs) in 8-month old WAG/Rij rats systemically injected with the potent CB1 receptor agonist, R(+)WIN55,212-2 (3,12 mg/kg, s.c.), given alone or combined with the CB1 receptor antagonist/inverse agonist, AM251 (12 mg/kg, s.c.). Results:, Data showed a reduction of CB1 receptor mRNA and protein levels in the reticular thalamic nucleus, and a reduction in CB1 receptor protein levels in ventral basal thalamic nuclei of 8-month-old WAG/Rij rats, as compared with age-matched ACI control rats. In vivo, R(+)WIN55,212-2 caused a dose-dependent reduction in the frequency of SWDs in the first 3 h after the injection. This was followed by a late increase in the mean SWD duration, which suggests a biphasic modulation of SWDs by CB1 receptor agonists. Both effects were reversed or attenuated when R(+)WIN55,212-2 was combined with AM251. Discussion:, These data indicate that the development of absence seizures is associated with plastic modifications of CB1 receptors within the thalamic-cortical-thalamic network, and raise the interesting possibility that CB1 receptors are targeted by novel antiabsence drugs. [source]


Selective GABAergic innervation of thalamic nuclei from zona incerta

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002
P. Barthó
Abstract Thalamocortical circuits that govern cortical rhythms and ultimately effect sensory transmission consist of three major interconnected elements: excitatory thalamocortical and corticothalamic neurons and GABAergic cells in the reticular thalamic nucleus. Based on the present results, a fourth component has to be added to this scheme. GABAergic fibres from an extrareticular diencephalic source were found to selectively innervate relay cells located mainly in higher-order thalamic nuclei. The origin of this pathway was localized to zona incerta (ZI), known to receive collaterals from corticothalamic fibres. First-order nuclei were innervated only in zones showing a high density of calbindin-positive neurons. The large GABA-immunoreactive incertal terminals established multiple contacts preferentially on the proximal dendrites of relay cells via symmetrical synapses with multiple release sites. The distribution, ultrastructural characteristics and postsynaptic target selection of extrareticular terminals were similar to type II muscarinic acetylcholine receptor-positive boutons, which constituted up to 49% of all GABAergic terminals in the posterior nucleus. This suggests that a significant proportion of the GABAergic input into certain thalamic territories involved in higher-order functions may have extrareticular origin. Unlike the reticular nucleus, ZI receives peripheral and layer V cortical input but no thalamic feedback; it projects to brainstem centres and has extensive intranuclear recurrent collaterals. This indicates that ZI exerts a conceptually new type of inhibitory control over the thalamus. The proximally situated, multiple active zones of ZI terminals indicate a powerful influence on the firing properties of thalamic neurons, which is conveyed to multiple cortical areas via relay cells which have widespread projections to neocortex. [source]


Localization of nAChR subunit mRNAs in the brain of Macaca mulatta

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2000
Zhi-Yan Han
Abstract We present here a systematic mapping of nAChR subunit mRNAs in Macaca mulatta brain. A fragment, from the transmembrane segments MIII to MIV of Macaca neuronal nAChR subunits was cloned, and shown to exhibit high identity (around 95%) to the corresponding human subunits. Then, specific oligodeoxynucleotides were synthesized for in situ hybridization experiments. Both ,4 and ,2 mRNA signals were widely distributed in the brain, being stronger in the thalamus and in the dopaminergic cells of the mesencephalon. Most brain nuclei displayed both ,4 and ,2 signals with the exception of some basal ganglia regions and the reticular thalamic nucleus which were devoid of ,4 signal. ,6 and ,3 mRNA signals were selectively concentrated in the substantia nigra and the medial habenula. The strongest signals for ,3 or ,4 mRNAs were found in the epithalamus (medial habenula and pineal gland), whereas there were no specific ,3 or ,4 signals in mesencephalic dopaminergic nuclei. ,5 and ,7 mRNA signals were found in several brain areas, including cerebral cortex, thalamus and substantia nigra, although at a lower level than ,4 and ,2. The distribution of ,3, ,4, ,5, ,6, ,7, ,2, ,3 and ,4 subunit mRNAs in the monkey is substantially similar to that observed in rodent brain. Surprisingly, ,2 mRNA signal was largely distributed in the Macaca brain, at levels comparable with those of ,4 and ,2. This observation represents the main difference between rodent and Macaca subunit mRNA distribution and suggests that, besides ,4,2*, ,2,2* nAChRs constitute a main nAChR isoform in primate brain. [source]


Motor thalamic circuits in primates with emphasis on the area targeted in treatment of movement disorders

MOVEMENT DISORDERS, Issue S3 2002
Igor A. Ilinsky MD
Abstract The ventral region of the motor thalamus that receives cerebellar afferents has been and still is the target of stereotactic interventions for movement disorders. According to Hassler, this area includes ventro-oralis posterior (Vop) and ventral intermedius (Vim) nuclei, although some investigators believe that Vop is associated with the pallidothalamic pathway. We sought to correlate our experimental data on distribution of nigral, pallidal, and cerebellar afferents to the monkey thalamus with Hassler's motor thalamic parcelations. We concluded that Hassler's parcelations retained their value, although some adjustments were needed to relate them to the current neuroanatomic data; particularly, the cerebellothalamic zone that represents the monkey ventral lateral nucleus (VL) corresponds topographically to Hassler's Vop, Vim, and most of Voi. Electron microscopic tracing studies have shown very complex circuitry in this region of the monkey thalamus, as the cerebellar and cortical afferents innervating it are engaged in complex synapses with thalamocortical projection neurons, and this interaction is strongly modulated by local circuit neurons and the input from the reticular thalamic nucleus, which are both inhibitory and ,-aminobutyric acid (GABA)ergic. Spinothalamic afferents also reach the VL, but this input is less studied in the monkey. The circuitry subserving the activity of thalamocortical projection neurons in the VL should be considered while interpreting the functional data obtained in stereotactic surgery. © 2002 Movement Disorder Society [source]