Home About us Contact | |||
Resuspension Events (resuspension + event)
Selected AbstractsBacteria in the cold deep-sea benthic boundary layer and sediment,water interface of the NE AtlanticFEMS MICROBIOLOGY ECOLOGY, Issue 2 2000Carol Turley Abstract This is a short review of the current understanding of the role of microorganisms in the biogeochemistry in the deep-sea benthic boundary layer (BBL) and sediment,water interface (SWI) of the NE Atlantic, the gaps in our knowledge and some suggestions of future directions. The BBL is the layer of water, often tens of meters thick, adjacent to the sea bed and with homogenous properties of temperature and salinity, which sometimes contains resuspended detrital particles. The SWI is the bioreactive interface between the water column and the upper 1 cm of sediment and can include a large layer of detrital material composed of aggregates that have sedimented from the upper mixed layer of the ocean. This material is biologically transformed, over a wide range of time scales, eventually forming the sedimentary record. To understand the microbial ecology of deep-sea bacteria, we need to appreciate the food supply in the upper ocean, its packaging, passage and transformation during the delivery to the sea bed, the seasonality of variability of the supply and the environmental conditions under which the deep-sea bacteria grow. We also need to put into a microbial context recent geochemical findings of vast reservoirs of intrinsically labile organic material sorped onto sediments. These may well become desorped, and once again available to microorganisms, during resuspension events caused by deep ocean currents. As biotechnologists apply their tools in the deep oceans in search of unique bacteria, an increasing knowledge and understanding of the natural processes undertaken and environmental conditions experienced by deep-sea bacteria will facilitate this exploitation. [source] Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainmentFRESHWATER BIOLOGY, Issue 2 2004Marc Schallenberg Summary 1. Wind-induced sediment resuspension can affect planktonic primary productivity by influencing light penetration and nutrient availability, and by contributing meroplankton (algae resuspended from the lake bed) to the water column. We established relationships between sediment resuspension, light and nutrient availability to phytoplankton in a shallow lake on four occasions. 2. The effects of additions of surficial sediments and nutrients on the productivity of phytoplankton communities were measured in 300 mL gas-tight bottles attached to rotating plankton wheels and exposed to a light gradient, in 24 h incubations at in situ temperatures. 3. While sediment resuspension always increased primary productivity, resuspension released phytoplankton from nutrient limitation in only two of the four experiments because the amount of available nitrogen and phosphorus entrained from the sediments was small compared with typical baseline levels in the water column. In contrast, chlorophyll a entrainment was substantial compared with baseline water column concentrations and the contribution of meroplankton to primary production was important at times, especially when seasonal irradiance in the lake was high. 4. Comparison of the in situ light climate with the threshold of light-limitation of the phytoplankton indicated that phytoplankton in the lake were only likely to be light-limited at times of extreme turbidity (e.g. >200 nephelometric turbidity units), particularly when these occur in winter. Therefore, resuspension influenced phytoplankton production mainly via effects on available nutrients and by entraining algae. The importance of each of these varied in time. 5. The partitioning of primary productivity between the water column and sediments in shallow lakes greatly influences the outcome of resuspension events for water column primary productivity. [source] RELATING PHYTOPLANKTON DYNAMICS AND PRODUCTION TO SEDIMENT RESUSPENSION IN SOUTHERN LAKE MICHIGANJOURNAL OF PHYCOLOGY, Issue 2001Article first published online: 24 SEP 200 Millie, D. F.1, Fahnenstiel, G. L.2, Carrick, H. J.3, Lohrenz, S. E.4, & Schofield, O. M. E.5 1USDA-Agricultural Research Service, Sarasota, FL 34236, USA, 2NOAA-Lake Michigan Field Station, Muskegon, MI 49441, USA, 3Institute of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA, 4Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14060, USA; 5Isttitute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road New Brunswick NJ 08901 USA, Sediment resuspension is an annually recurrent feature during spring holomixis in southern Lake Michigan. Relationships between resuspension events and phyt-oplankton biomass, compositional dynamics, and pro-duction were evaluated during 1998 and 1999. Increased water-column light attenuation (KPAR) and suspended particulate matter (SPM) concentrations corresponded with resuspension events within nearshore regions. However, neither KPAR nor SPM corresponded with chlorophyll (Chl) a concentrations, indicating no impact of resuspension on instantaneous biomass accumulation. Diatoms and cryptophytes dominated phytoplankton assemblages and together typically comprised greater than 85% of the Chl a. The associations of SPM/KPAR with diatom Chl a, and the inverse relationship between relative diatom and crypto-phyte Chl a corresponded with the dominance of diatoms and cryptophytes in near- and offshore waters, respectively. Moreover, a spatial variation in species composition occurred during resuspension events; small, centric diatoms exhibiting meroplanktonic life histories and large, pennate diatoms considered benthic in origin were associated with sediment resuspension whereas large, net diatoms and cryptophytes typically comprising phytoplankton of the annual spring bloom and of optically-clear, offshore waters were not. The presence of viable diatom photopigments and the abundance of small centric diatoms within the surficial sediments, established this layer as the source of meroplankton. Integral production was dramatically reduced within sediment-impacted waters; however, nearshore assemblages appeared to have greater photosynthetic capacities than offshore assemblages. Although resuspension dramatically influenced near-shore phytoplankton assemblages, it appeared to have little, if any relationship with the compositional development of the annual spring bloom. [source] DO PHYSICAL FACTORS REGULATE PHYTOPLANKTON DISTRIBUTION PATTERNS IN LARGE, SHALLOW LAKES?JOURNAL OF PHYCOLOGY, Issue 2000H.J. Carrick Factors that regulate phytoplankton dynamics in shallow, productive lakes are poorly understood, due to their predisposition for frequent algal blooms and sediment resuspension events. In Lake Apopka, greatest phytoplankton biomass reflects wind-induced resuspension of algae (meroplankton) that exists on the aphotic lake bottom in a layer approximately 5 cm thick; this assemblage is dominated by diatoms (>60% of total biomass) that can occur in resting stages. Once exposed to moderate light, meroplankton are capable of growth and photosynthetic rates comparable with surface populations. In Lake Okeechobee, remote sensing was used to assess the basin-wide distribution of suspended particles. Satellite reflectance values agreed well with in situ particle densities at 20 in-lake stations (average r2; LANDSAT = 0.81, AVHRR = 0.53), and maps of algal blooms (r2 = 0.79, p , 0.01). The greatest chlorophyll concentrations occurred in the vicinity of tributary nutrient inputs at the lake's perimeter, while turbidity increased towards the center of the lake reflecting predominant water circulation patterns. These results underscore the importance of physical-biological interactions in lakes. [source] |