Home About us Contact | |||
Resting Level (resting + level)
Selected AbstractsInhibition of carbachol-evoked oscillatory currents by the NO donor sodium nitroprusside in guinea-pig ileal myocytesEXPERIMENTAL PHYSIOLOGY, Issue 4 2005Seung-Soo Chung The effect of sodium nitroprusside (SNP) on carbachol (CCh)-evoked inward cationic current (Icat) oscillations in guinea-pig ileal longitudinal myocytes was investigated using the whole-cell patch-clamp technique and permeabilized longitudinal muscle strips. SNP (10 ,m) completely inhibited Icat oscillations evoked by 1 ,m CCh. 1H-(1,2,4) Oxadiazole [4,3-a] quinoxaline-1-one (ODQ; 1 ,m) almost completely prevented the inhibitory effect of SNP on Icat oscillations. 8-Bromo-guanosine 3,,5,-cyclic monophosphate (8-Br-cGMP; 30 ,m) in the pipette solution completely abolished Icat oscillations. However, a pipette solution containing Rp-8-Br-cGMP (30 ,m) almost completely abolished the inhibitory effect of SNP on Icat oscillations. When the intracellular calcium concentration ([Ca2+]i) was held at a resting level using BAPTA (10 mm) and Ca2+ (4.6 ,m) in the pipette solution, CCh (1 ,m) evoked only the sustained component of Icat without any oscillations and SNP did not affect the current. A high concentration of inositol 1,4,5-trisphosphate (IP3; 30 ,m) in the patch pipette solutions significantly reduced the inhibitory effect of SNP (10 ,m) on Icat oscillations. SNP significantly inhibited the Ca2+ release evoked by either CCh or IP3 but not by caffeine in permeabilized preparations of longitudinal muscle strips. These results suggest that the inhibitory effects of SNP on Icat oscillations are mediated, in part, by functional modulation of the IP3 receptor, and not by the inhibition of cationic channels themselves or by muscarinic receptors in the plasma membrane. This inhibition seems to be mediated by an increased cGMP concentration in a protein kinase G-dependent manner. [source] Neural Regulation Of Renal Blood Flow: A Re-ExaminationCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2000Simon C Malpas SUMMARY 1. The importance of renal sympathetic nerve activity (RSNA) in the regulation of renal function is well established. However, it is less clear how the renal vasculature responds to the different mean levels and patterns of RSNA. While many studies have indicated that small to moderate changes in RSNA preferentially regulate renin secretion or sodium excretion and only large changes in RSNA regulate renal blood flow (RBF), other experimental evidence suggests that small changes in RSNA can influence RBF 2. When RSNA has been directly measured in conjunction with RBF, it appears that a range of afferent stimuli can induce reflex changes in RBF. However, many studies in a variety of species have measured RBF only during stimuli designed to reflexly increase or decrease sympathetic activity, but have not recorded RSNA. While this approach can be informative, it is not definitive because the ability of the vasculature to respond to RSNA may, in part, reflect the resting level of RSNA and, therefore, the vasoconstrictive state of the vasculature under the control conditions. 3. Further understanding of the control of RBF by RSNA has come from studies that have analysed the underlying rhythms in sympathetic nerve activity and their effect on the cardiovascular system. These studies show that the frequency,response characteristic of the renal vasculature is such that higher frequency oscillations in RSNA (above 0.6 Hz) contribute to setting the mean level of RBF. In comparison, lower frequency oscillations in RSNA can induce cyclic vasoconstriction and dilation in the renal vasculature, thus inducing oscillations in RBF. 4. In summary, the present review discusses the neural control of RBF, summarizing evidence in support of the hypothesis that RBF is under the influence of RSNA across the full range of RSNA. [source] Interplay of constitutively released nucleotides, nucleotide metabolism, and activity of P2Y receptorsDRUG DEVELOPMENT RESEARCH, Issue 2-3 2001Eduardo R. Lazarowski Abstract At least six mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP or UDP. Although the existence of ectoenzymes that rapidly metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. In addition, the existence of basal nucleotide release and the contribution of resting levels of ATP and UTP to P2 receptor activation are poorly understood. In the absence of exogenous agonists, an apyrase-sensitive inositol phosphate accumulation was observed in resting 16HBE14o, human bronchial epithelial cells endogenously expressing P2Y receptors and in 1321N1 human astrocytoma cells expressing a recombinant P2Y2 receptor. To test whether nucleotide release may account for basal P2 receptor activities, the rates of extracellular accumulation and metabolism of endogenous ATP were examined with resting 16HBE14o,, C6 rat glioma, and 1321N1 cell cultures. Although extracellular ATP concentrations (1-5 nM) remained unchanged for up to 12 h, [,32P] ATP included in the medium (as a radiotracer) was completely degraded within 120 min, indicating that ATP release balanced ATP hydrolysis. The calculated basal rates of ATP release ranged from 20 to 200 fmol/min per million cells. HPLC analysis during steady state revealed that the gamma-phosphate of ATP was reversibly transferred to species further identified as UTP and GTP, implicating ecto-nucleoside diphosphokinase (NDPK)-catalyzed phosphorylation of endogenous UDP and GDP. At steady state, the final 32P-products of [,32P]ATP metabolism were 32P-orthophosphoric acid and a species further purified and identified as 32P-pyrophosphate. Constitutive nucleotide release balanced by the concerted activities of ecto-ATPase, ecto-ATP pyrophosphatase, and ecto-NDPK may determine the resting levels of extracellular nucleotides and therefore, the basal activity of P2 receptors. Drug Dev. Res. 53:66,71, 2001. © 2001 Wiley-Liss, Inc. [source] Patterns of respiration in Locusta migratoria nymphs when feedingPHYSIOLOGICAL ENTOMOLOGY, Issue 1 2000Scott M. Gouveia Summary Flow-through respirometry was used to investigate patterns of respiration of fifth-instar Locusta migratoria L. nymphs fed a chemically defined, synthetic food. Each animal was recorded for up to 2.7 h, during which they had access to food and water ad libitum, and at least one meal was taken. The start of feeding was coincident with a sudden and rapid rise in respiration. Both carbon dioxide (CO2) production and oxygen (O2) consumption rose, the traces for the two gasses showing a high degree of alignment. The end of a meal correlated with a sudden and rapid decrease in respiratory rate towards resting levels. When feeding was interrupted by an intra-meal pause, respiratory rate tended to drop marginally and then stabilize, before rising rapidly upon the resumption of feeding within the meal. Maximal rates of respiration during feeding represented a 3,4-fold increase over those at rest. Walking and climbing within the chamber were not associated with any noticeable change in respiratory rate above baseline. When locusts were quiescent between feeding episodes, respiration was steady and continuous, rather than discontinuous. Possible causes for large changes in respiration during feeding are discussed. [source] |