Response Traits (response + trait)

Distribution by Scientific Domains


Selected Abstracts


Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem

ECOLOGY LETTERS, Issue 6 2003
Shahid Naeem
Abstract Experimental investigations of the relationship between biodiversity and ecosystem functioning (BEF) directly manipulate diversity then monitor ecosystem response to the manipulation. While these studies have generally confirmed the importance of biodiversity to the functioning of ecosystems, their broader significance has been difficult to interpret. The main reasons for this difficulty concern the small scales of the experiment, a bias towards plants and grasslands, and most importantly a general lack of clarity in terms of what attributes of functional diversity (FD) were actually manipulated. We review how functional traits, functional groups, and the relationship between functional and taxonomic diversity have been used in current BEF research. Several points emerged from our review. First, it is critical to distinguish between response and effect functional traits when quantifying or manipulating FD. Second, although it is widely done, using trophic position as a functional group designator does not fit the effect-response trait division needed in BEF research. Third, determining a general relationship between taxonomic and FD is neither necessary nor desirable in BEF research. Fourth, fundamental principles in community and biogeographical ecology that have been largely ignored in BEF research could serve to dramatically improve the scope and predictive capabilities of BEF research. We suggest that distinguishing between functional response traits and functional effect traits both in combinatorial manipulations of biodiversity and in descriptive studies of BEF could markedly improve the power of such studies. We construct a possible framework for predictive, broad-scale BEF research that requires integrating functional, community, biogeographical, and ecosystem ecology with taxonomy. [source]


Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail

FUNCTIONAL ECOLOGY, Issue 5 2002
S. Lavorel
Summary 1The concept of plant functional type proposes that species can be grouped according to common responses to the environment and/or common effects on ecosystem processes. However, the knowledge of relationships between traits associated with the response of plants to environmental factors such as resources and disturbances (response traits), and traits that determine effects of plants on ecosystem functions (effect traits), such as biogeochemical cycling or propensity to disturbance, remains rudimentary. 2We present a framework using concepts and results from community ecology, ecosystem ecology and evolutionary biology to provide this linkage. Ecosystem functioning is the end result of the operation of multiple environmental filters in a hierarchy of scales which, by selecting individuals with appropriate responses, result in assemblages with varying trait composition. Functional linkages and trade-offs among traits, each of which relates to one or several processes, determine whether or not filtering by different factors gives a match, and whether ecosystem effects can be easily deduced from the knowledge of the filters. 3To illustrate this framework we analyse a set of key environmental factors and ecosystem processes. While traits associated with response to nutrient gradients strongly overlapped with those determining net primary production, little direct overlap was found between response to fire and flammability. 4We hypothesize that these patterns reflect general trends. Responses to resource availability would be determined by traits that are also involved in biogeochemical cycling, because both these responses and effects are driven by the trade-off between acquisition and conservation. On the other hand, regeneration and demographic traits associated with response to disturbance, which are known to have little connection with adult traits involved in plant ecophysiology, would be of little relevance to ecosystem processes. 5This framework is likely to be broadly applicable, although caution must be exercised to use trait linkages and trade-offs appropriate to the scale, environmental conditions and evolutionary context. It may direct the selection of plant functional types for vegetation models at a range of scales, and help with the design of experimental studies of relationships between plant diversity and ecosystem properties. [source]


Habitat islands in fire-prone vegetation: do landscape features influence community composition?

JOURNAL OF BIOGEOGRAPHY, Issue 5-6 2002
Peter J. Clarke
Aim, Location Landscape features, such as rock outcrops and ravines, can act as habitat islands in fire-prone vegetation by influencing the fire regime. In coastal and sub-coastal areas of Australia, rock outcrops and pavements form potential habitat islands in a matrix of fire-prone eucalypt forests. The aim of this study was to compare floristic composition and fire response traits of plants occurring on rocky areas and contrast them with the surrounding matrix. Methods Patterns of plant community composition and fire response were compared between rocky areas and surrounding sclerophyll forests in a range of climate types to test for differences. Classification and ordination were used to compare floristic composition and univariate analyses were used to compare fire response traits. Results The rock outcrops and pavements were dissimilar in species composition from the forest matrix but shared genera and families with the matrix. Outcrops and pavements were dominated by scleromorphic shrubs that were mainly killed by fire and had post-fire seedling recruitment (obligate seeders). In contrast, the most abundant species in the adjacent forest matrix were species that sprout after fire (sprouters). Main conclusions Fire frequency and intensity are likely to be less on outcrops than in the forest matrix because the physical barrier of rock edges disrupts fires. Under the regime of more frequent fires, obligate seeders have been removed or reduced in abundance from the forest matrix. This process may have also operated over evolutionary time-scales and resulted in convergence towards obligate seeding traits on outcrop fire shadows. In contrast, there may have been convergence towards sprouting in the forest matrix as a result of selection for persistence under a regime of frequent fire. [source]


Genetic independence of female signal form and male receiver design in the almond moth, Cadra cautella

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2008
J. D. ALLISON
Abstract Efficient signalling requires coordination of signal form and receiver design. To maintain signal function, parallel changes in signaller and receiver traits are required. Genetic correlation and co-evolution among signal and response traits have been proposed to preserve signal function (i.e. coordination) during the evolution of mate recognition systems. Empirical studies have provided support for both mechanisms; however, there is debate regarding the interpretation of some of these studies. Tests for a genetic correlation typically hybridize divergent signalling systems and look at hybrid signal form and receiver design, or impose artificial selection on signal form and look for an indirect response to selection in receiver design. Some of the hybridization studies did not achieve reassortment of genes from the parental types, whereas some of the artificial selection studies incorporated random mating in their designs. As a result of these limitations, the hybridization studies cannot discriminate between genetic correlation and co-evolution with primarily additive genetic effects underlying signal and response traits. Similarly, the artificial selection experiments cannot discriminate between genetic correlation because of linkage disequilibrium and co-evolution. This study examined the mating preferences of male almond moths, Cadra cautella, before and after female moths were artificially selected (using a design incorporating assortative mating) for novel pheromone blend ratios. Our results demonstrate the absence of a genetic correlation between signal and response traits in the almond moth. [source]