Respiratory Chain Activity (respiratory + chain_activity)

Distribution by Scientific Domains


Selected Abstracts


Diabetes and mitochondrial bioenergetics: Alterations with age

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2003
Fernanda M. Ferreira
Abstract Several studies have been carried out to evaluate the alterations in mitochondrial functions of diabetic rats. However, some of the results reported are controversial, since experimental conditions, such as aging, and/or strain of animals used were different. The purpose of this study was to evaluate the metabolic changes in liver mitochondria, both in the presence of severe hyperglycaemia (STZ-treated rats) and mild hyperglycaemia (Goto-Kakizaki (GK) rats). Moreover, metabolic alterations were evaluated both at initial and at advanced states of the disease. We observed that both models of type 1 and type 2 diabetes presented alterations on respiratory chain activity. Because of continual severe hyperglycaemia, 9 weeks after the induction of diabetes, the respiratory function declined in STZ-treated rats, as observed by membrane potential and respiratory ratios (RCR, P/O, and FCCP-stimulated respiration) assessment. In contrast, GK rats of 6 months age presented increased respiratory ratios. To localize which respiratory complexes are affected by diabetes, enzymatic respiratory chain activities were evaluated. We observed that succinate dehydrogenase and cytochrome c oxidase activities were significantly augmented both in STZ-treated rats and GK rats of 6 months age. Moreover, H+ -ATPase activity was also significantly increased in STZ-treated rats with 3 weeks of diabetes and in GK rats of 6 months age as compared to controls. Therefore, these results clearly suggest that both animal models of diabetes present some metabolic adjustments in order to circumvent the deleterious effects promoted by the high glucose levels typical of the disease. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:214,222, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10081 [source]


Neuronal expression of a single-subunit yeast NADH,ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan

AGING CELL, Issue 2 2010
Sepehr Bahadorani
Summary The ,rate of living' theory predicts that longevity should be inversely correlated with the rate of mitochondrial respiration. However, recent studies in a number of model organisms, including mice, have reported that interventions that retard the aging process are, in fact, associated with an increase in mitochondrial activity. To better understand the relationship between energy metabolism and longevity, we supplemented the endogenous respiratory chain machinery of the fruit fly Drosophila melanogaster with the alternative single-subunit NADH,ubiquinone oxidoreductase (Ndi1) of the baker's yeast Saccharomyces cerevisiae. Here, we report that expression of Ndi1 in fly mitochondria leads to an increase in NADH,ubiquinone oxidoreductase activity, oxygen consumption, and ATP levels. In addition, exogenous Ndi1 expression results in increased CO2 production in living flies. Using an inducible gene-expression system, we expressed Ndi1 in different cells and tissues and examined the impact on longevity. In doing so, we discovered that targeted expression of Ndi1 in fly neurons significantly increases lifespan without compromising fertility or physical activity. These findings are consistent with the idea that enhanced respiratory chain activity in neuronal tissue can prolong fly lifespan. [source]


Melatonin protects hepatic mitochondrial respiratory chain activity in senescence-accelerated mice

JOURNAL OF PINEAL RESEARCH, Issue 3 2002
Yuji Okatani
Mitochondrial oxidative damage from free radicals may be a factor underlying aging, and melatonin, a powerful free radical scavenger, may participate in mitochondrial metabolism. We measured respiratory chain complex I and IV activities in liver mitochondria from a strain of senescence-accelerated prone mice (SAMP8) and a strain of senescence-accelerated resistant mice (SAMR1) at age 3, 6, and 12 months. No age-associated effects were found in either complex I and IV activities, thiobarbituric acid-reactive substances (TBARS), or glutathione peroxidase (GPx) activity in SAMR1. In contrast, SAMP8 showed significant age-associated decreases in complex I and IV activities. While no age effect was found in TBARS in SAMP8, TBARS levels in SAMP8 were significantly more abundant than in SAMR1. GPx activity in SAMP8 decreased significantly by 12 months. Daily oral melatonin administration (2 ,g/mL of drinking fluid) beginning when the mice were 7 months old significantly increased complex I and IV activity, decreased TBARS, and increased GPx activities in both SAMR1 and SAMP8 at 12 months. The implication of the findings is that melatonin may be beneficial during aging as it reduced the deteriorative oxidative changes in mitochondria and other portions of the cell associated with advanced age. [source]