Resource Deficiencies (resource + deficiency)

Distribution by Scientific Domains


Selected Abstracts


Prey availability influences habitat tolerance: an explanation for the rarity of peregrine falcons in the tropics

ECOGRAPHY, Issue 3 2001
Andrew R. Jenkins
The density and productivity of peregrine falconFalco peregrinus populations correlate positively with distance from the Equator, while habitat specificity increases with proximity to the Equator. Low peregrine densities in the tropics may he a result of competition with similar conveners (e.g. the lanner falcon F. biarmicus in Africa), which replace them in many areas. Alternatively, tropical peregrines may he limited by resource deficiencies that do not affect their close relatives. Data from peregrine and lanner populations in South Africa support the resource deficiency hypothesis, and there is no evidence to suggest direct competition between the two species. In areas where prey are not spatially or temporally concentrated, or otherwise particularly vulnerable to attack, morphological and behavioural specializations of peregrines probably restrict them to optimal foraging conditions. The relative dynamics of.Arctic and temperate vs tropical prey populations is suggested as an important factor determining peregrine distribution globally. Populations of other widespread hut particularly specialized avian predators (e.g. osprey Pandion haliaetus) may he similarly controlled. Food limitation (in terms of a dearth of particularly vulnerable prey) in the tropics has resulted in specialization and rarity in peregrines and generalization and relative abundance in similar congeners. [source]


Prey availability influences habitat tolerance: an explanation for the rarity of peregrine falcons in the tropics

ECOGRAPHY, Issue 3 2001
Article first published online: 30 JUN 200
The density and productivity of peregrine falcon Falco peregrinus populations correlate positively with distance from the Equator, while habitat specificity increases with proximity to the Equator. Low peregrine densities in the tropics may be a result of competition with similar congeners (e.g. the lanner falcon F. biarmicus in Africa), which replace them in many areas. Alternatively, tropical peregrines may be limited by resource deficiencies that do not affect their close relatives. Data from peregrine and lanner populations in South Africa support the resource deficiency hypothesis, and there is no evidence to suggest direct competition between the two species. In areas where prey are not spatially or temporally concentrated, or otherwise particularly vulnerable to attack, morphological and behavioural specializations of peregrines probably restrict them to optimal foraging conditions. The relative dynamics of Arctic and temperate vs tropical prey populations is suggested as an important factor determining peregrine distribution globally. Populations of other widespread but particularly specialized avian predators (e.g. osprey Pandion haliaetus) may be similarly controlled. Food limitation (in terms of a dearth of particularly vulnerable prey) in the tropics has resulted in specialization and rarity in peregrines and generalization and relative abundance in similar congeners. [source]


Intraspecific seed trait variations and competition: passive or adaptive response?

FUNCTIONAL ECOLOGY, Issue 3 2009
Cyrille Violle
Summary 1The phenotype of offspring depends on the abiotic and biotic environment in which the parents developed. However, the direct effects of competition experienced by parent plants on single-seed traits are poorly documented despite their impact on plant fitness. 2We hypothesize that single-seed traits can differentially respond to the resource deficiencies of parent plants due to competition: seed quality may decrease as seed number does, magnifying the negative effects of competition for offspring (,passive response' hypothesis), or increase and then enhance offspring fitness to offset the reduction in offspring number (,adaptive response' hypothesis). Here we tested these hypotheses for four single-seed traits. We assessed the sensibility of their responses to changes in competition intensity due to species with different competitive effects and to contrasting soil nitrogen conditions. 3In a common-garden experiment, four single-seed traits related to fitness , seed mass, seed nitrogen concentration (SNC), germinability and the timing of germination , were measured on a phytometer species transplanted in 14 different neighbours grown in monoculture with and without soil nitrogen limitation. 4Under nitrogen-limiting conditions, the responses of SNC and of the timing of germination were passive and mainly related to the effects of neighbours on soil nitrogen availability, as shown by the increase in SNC with N-fixing neighbours. Within-individual seed mass variability decreased with increasing competition intensity, as an adaptive response to counterbalance the reduction in seed production. With nitrogen supplementation, competitors had no detectable effect on single-seed traits despite an overall increase in SNC and germination rate, confirming their nitrogen-dependent passive responses to competition. Germinability did not change among treatments. 5The impact of competition on single-seed traits depends on both phytometer trait identity and resource modulation by neighbours. The passive response of seed chemical composition to competitors may magnify the competitive effects on offspring. By contrast, the adaptive response of seed size variability may offset these competitive effects. As a consequence, experiments looking at the fitness consequences of competition should not only consider the effects on fitness parameters of a target plant but also on the offspring. [source]


Addressing mental health resource deficiencies in Pacific Rim countries

ASIA-PACIFIC PSYCHIATRY, Issue 1 2009
Allan Tasman MD
[source]