Home About us Contact | |||
Reservoir Simulation (reservoir + simulation)
Selected AbstractsThermal reservoir modeling in petroleum geomechanicsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2009Shunde Yin Abstract Thermal oil recovery processes involve high pressures and temperatures, leading to large volume changes and induced stresses. These cannot be handled by traditional reservoir simulation because it does not consider coupled geomechanics effects. In this paper we present a fully coupled, thermal half-space model using a hybrid DDFEM method. A finite element method (FEM) solution is adopted for the reservoir and the surrounding thermally affected zone, and a displacement discontinuity method is used for the surrounding elastic, non-thermal zone. This approach analyzes stress, pressure, temperature and volume change in the reservoir; it also provides stresses and displacements around the reservoir (including transient ground surface movements) in a natural manner without introducing extra spatial discretization outside the FEM zone. To overcome spurious spatial temperature oscillations in the convection-dominated thermal advection,diffusion problem, we place the transient problem into an advection,diffusion,reaction problem framework, which is then efficiently addressed by a stabilized finite element approach, the subgrid-scale/gradient subgrid-scale method. Copyright © 2008 John Wiley & Sons, Ltd. [source] Numerical simulation of two-dimensional transient water driven non-Newtonian fluid flow in porous mediaINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2002Zuojin Zhu Abstract Numerical simulation of two-dimensional transient water driven non-Newtonian fluid flow in porous media has been performed. The hyperbolic non-Newtonian fluid model was used to describe the characteristics of non-Newtonian fluid flow. Governing equations were first approximated by implicit finite difference, and then solved by a stabilized bi-conjugate gradient (Bi-CGSTAB) approach. A comparison of the numerical results for the case of water driven Newtonian fluid was made to validate the numerical method. For water driven Newtonian fluid flow, it was found that the numerical results are satisfactorily consistent with those obtained by commercial software VIP which is the abbreviation of vector implicit procedure for numerical simulation of Newtonian fluid flow in porous media. The maximum deviation for average pressure is less than 1.5 per cent; the distribution of water saturation is almost the same as that obtained by VIP. For water driven non-Newtonian fluid flow in porous media, it was found that the factor of pressure gradient of the non-Newtonian fluid has significant effects on the process of oil recovery. The correction of numerical simulation based on the global mass balance plays an important role in oil reservoir simulation. Copyright © 2002 John Wiley & Sons, Ltd. [source] Higher-resolution convection schemes for flow in porous media on highly distorted unstructured gridsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2008Sadok Lamine Abstract Higher-resolution schemes are presented for convective flow approximation on highly distorted unstructured grids. The schemes are coupled with continuous full-tensor Darcy-flux approximations. A sequence of non-uniform and distorted grid formulations are developed and compared for a range of unstructured meshes with variable grid spacing. The higher-order schemes are constructed using non-uniform grid slope limiters such that they are stable with a local maximum principle, ensuring that solutions are free of spurious oscillations. Benefits of the resulting schemes are demonstrated for classical test problems in reservoir simulation including cases with full-tensor permeability fields. The test cases involve a range of unstructured grids with variations in grid spacing, orientation and permeability that lead to flow fields that are poorly resolved by standard simulation methods. The higher-order formulations are shown to effectively reduce numerical diffusion, leading to improved resolution of concentration and saturation fronts. Copyright © 2008 John Wiley & Sons, Ltd. [source] Comparison of GMRES and ORTHOMIN for the black oil model on unstructured gridsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2006Wenjun Li Abstract This paper addresses an application of ORTHOMIN and GMRES to petroleum reservoir simulation using the black oil model on unstructured grids. Comparisons between these two algorithms are presented in terms of storage and total flops per restart step. Numerical results indicate that GMRES is faster than ORTHOMIN for all tested petroleum reservoir problems, particularly for large scale problems. The control volume function approximation method is utilized in the discretization of the governing equations of the black oil model. This method can accurately approximate both the pressure and velocity in the simulation of multiphase flow in porous media, effectively reduce grid orientation effects, and be easily applied to arbitrarily shaped control volumes. It is particularly suitable for hybrid grid reservoir simulation. Copyright © 2006 John Wiley & Sons, Ltd. [source] Enabling interactive and collaborative oil reservoir simulations on the GridCONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 11 2005Manish Parashar Abstract Grid-enabled infrastructures and problem-solving environments can significantly increase the scale, cost-effectiveness and utility of scientific simulations, enabling highly accurate simulations that provide in-depth insight into complex phenomena. This paper presents a prototype of such an environment, i.e. an interactive and collaborative problem-solving environment for the formulation, development, deployment and management of oil reservoir and environmental flow simulations in computational Grid environments. The project builds on three independent research efforts: (1) the IPARS oil reservoir and environmental flow simulation framework; (2) the NetSolve Grid engine; and (3) the Discover Grid-based computational collaboratory. Its primary objective is to demonstrate the advantages of an integrated simulation infrastructure towards effectively supporting scientific investigation on the Grid, and to investigate the components and capabilities of such an infrastructure. Copyright © 2005 John Wiley & Sons, Ltd. [source] 3D imaging of a reservoir analogue in point bar deposits in the Ferron Sandstone, Utah, using ground-penetrating radarGEOPHYSICAL PROSPECTING, Issue 3 2004Xiaoxian Zeng ABSTRACT Most existing reservoir models are based on 2D outcrop studies; 3D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we have initiated a multidimensional characterization of reservoir analogues in the Cretaceous Ferron Sandstone in Utah. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of reservoir flow units, barriers and baffles at the outcrop. High-resolution 2D and 3D ground-penetrating radar (GPR) images extend these reservoir characteristics into 3D to allow the development of realistic 3D reservoir models. Models use geometric information from mapping and the GPR data, combined with petrophysical data from surface and cliff-face outcrops, and laboratory analyses of outcrop and core samples. The site of the field work is Corbula Gulch, on the western flank of the San Rafael Swell, in east-central Utah. The outcrop consists of an 8,17 m thick sandstone body which contains various sedimentary structures, such as cross-bedding, inclined stratification and erosional surfaces, which range in scale from less than a metre to hundreds of metres. 3D depth migration of the common-offset GPR data produces data volumes within which the inclined surfaces and erosional surfaces are visible. Correlation between fluid permeability, clay content, instantaneous frequency and instantaneous amplitude of the GPR data provides estimates of the 3D distribution of fluid permeability and clay content. [source] |