Reserve Design (reserve + design)

Distribution by Scientific Domains


Selected Abstracts


Accounting for uncertainty in marine reserve design

ECOLOGY LETTERS, Issue 1 2006
Benjamin S. Halpern
Abstract Ecosystems and the species and communities within them are highly complex systems that defy predictions with any degree of certainty. Managing and conserving these systems in the face of uncertainty remains a daunting challenge, particularly with respect to developing networks of marine reserves. Here we review several modelling frameworks that explicitly acknowledge and incorporate uncertainty, and then use these methods to evaluate reserve spacing rules given increasing levels of uncertainty about larval dispersal distances. Our approach finds similar spacing rules as have been proposed elsewhere , roughly 20,200 km , but highlights several advantages provided by uncertainty modelling over more traditional approaches to developing these estimates. In particular, we argue that uncertainty modelling can allow for (1) an evaluation of the risk associated with any decision based on the assumed uncertainty; (2) a method for quantifying the costs and benefits of reducing uncertainty; and (3) a useful tool for communicating to stakeholders the challenges in managing highly uncertain systems. We also argue that incorporating rather than avoiding uncertainty will increase the chances of successfully achieving conservation and management goals. [source]


Ecological correlates of vulnerability to fragmentation in Neotropical bats

JOURNAL OF APPLIED ECOLOGY, Issue 1 2008
Christoph F. J. Meyer
Summary 1In the face of widespread human-induced habitat fragmentation, identification of those ecological characteristics that render some species more vulnerable to fragmentation than others is vital for understanding, predicting and mitigating the effects of habitat alteration on biodiversity. We compare hypotheses on the causes of interspecific differences in fragmentation sensitivity using distribution and abundance data collected on 23 species of Neotropical bats. 2Bats were captured over a 2-year period on 11 land-bridge islands in Gatún Lake, Panama, and on the adjacent mainland. We derived a series of explanatory variables from our capture data and from the literature: (1) natural abundance in continuous forest, (2) body mass, (3) trophic level, (4) dietary specialization, (5) vertical stratification, (6) edge-sensitivity, (7) mobility, (8) wing morphology (aspect ratio and relative wing loading) and (9) ecologically scaled landscape indices (ESLIs). After phylogenetic correction, these variables were used separately and in combination to assess their association with two indices of fragmentation sensitivity, species prevalence (proportion of islands occupied) as well as an index of change in abundance. 3Model selection based on Akaike's information criterion identified edge-sensitivity as the best correlate of vulnerability to fragmentation. Natural abundance and mobility or traits linked to mobility (relative wing loading and ESLI) received limited support as predictors. Vulnerability of gleaning animalivorous bats is probably caused by a combination of these traits. 4Synthesis and applications. Our findings emphasize the importance of a local-scale approach in developing predictive models of species fragmentation sensitivity and indicate that risk assessments of Neotropical bats could be based on species tolerance to habitat edges and mobility-related traits. We suggest that, in order to be effective, management efforts should aim to minimize the amount of edge-habitat and reduce the degree of fragment-matrix contrast. Moreover, if high bat diversity is to be preserved in fragmented Neotropical landscapes, conservation measures regarding reserve design should assure spatial proximity to source populations in larger tracts of continuous forest and a low degree of remnant isolation. [source]


Making better biogeographical predictions of species' distributions

JOURNAL OF APPLIED ECOLOGY, Issue 3 2006
ANTOINE GUISAN
Summary 1Biogeographical models of species' distributions are essential tools for assessing impacts of changing environmental conditions on natural communities and ecosystems. Practitioners need more reliable predictions to integrate into conservation planning (e.g. reserve design and management). 2Most models still largely ignore or inappropriately take into account important features of species' distributions, such as spatial autocorrelation, dispersal and migration, biotic and environmental interactions. Whether distributions of natural communities or ecosystems are better modelled by assembling individual species' predictions in a bottom-up approach or modelled as collective entities is another important issue. An international workshop was organized to address these issues. 3We discuss more specifically six issues in a methodological framework for generalized regression: (i) links with ecological theory; (ii) optimal use of existing data and artificially generated data; (iii) incorporating spatial context; (iv) integrating ecological and environmental interactions; (v) assessing prediction errors and uncertainties; and (vi) predicting distributions of communities or collective properties of biodiversity. 4Synthesis and applications. Better predictions of the effects of impacts on biological communities and ecosystems can emerge only from more robust species' distribution models and better documentation of the uncertainty associated with these models. An improved understanding of causes of species' distributions, especially at their range limits, as well as of ecological assembly rules and ecosystem functioning, is necessary if further progress is to be made. A better collaborative effort between theoretical and functional ecologists, ecological modellers and statisticians is required to reach these goals. [source]


The uptake of applied ecology

JOURNAL OF APPLIED ECOLOGY, Issue 1 2002
S. J. Ormerod
Summary 1We asked 229 authors who have published recently in the Journal of Applied Ecology (1999,2001) whether their papers made management or policy recommendations and whether they had evidence of consequent uptake. 2A total of 108 respondents working in the UK (34%), Europe (30%), the Americas (12%), Australasia (11%), Asia (7%) and Africa (6%) reported on 110 papers. They represented agro-ecosystems (35%), temperate forests or woodlands (16%), savanna, grass or arid lands (11%), rivers or wetlands (10%), estuaries or marine systems (7%) and tropical forests (5%). The major organisms were invertebrates (27%), birds (24%), mammals (21%) and higher plants (21%). Topics apparently under-represented in recent coverage include ecosystem science, urban areas, soils, mountain systems, fish, amphibians and lower organisms such as algae. 3Almost all papers (99%) carried recommendations and for 57% there was evidence of uptake in the broad categories of ,environmental management or models', ,information, training and education' and ,monitoring and assessment'. Most uptake involved large geographical scales through habitat or species management plans (32% of cases), effects on reserve design or designation (6%), and effects on agri-environmental policy (5%). The development of further research (11%), the communication of methods to other ecologists (9%), the dissemination of recommendations to practitioners or agencies (7%), and uptake in training or education (5%) were important uses of information. 4Prestige from publication in the Journal of Applied Ecology aided several authors in convincing end-users of research value. User involvement in research as participants or funders was widespread (> 42% of papers), a fact which almost certainly promotes uptake along with the parallel dissemination of management messages. We view applied issues as an important interface between end-users and ecologists of value to ,both' communities but suggest that improved communication will further benefit the sponsorship and application of ecological science. 5The major reason offered for lack of uptake was that it was still too soon after publication (21% of respondents). Costs, difficulty of implementation, the scale of the problem, and ,challenges to existing thinking' each figured in more than one response. 6For some respondents, papers were led by curiosity rather than the need for direct application. Several authors published in the Journal to share ideas internationally, or said that recommendations were general, conceptual or long-term rather than specific. The editors of the Journal of Applied Ecology recognize the seminal importance of contributions that affect policy incrementally and conceptually as much as those with specific application. 7These data provide evidence that ecological science is aiding environmental management and policy across a wide range of regions, ecosystems and types of organisms; rather than merely detecting problems, applied ecology is offering solutions both directly and more diffusely through conceptual advance. We invite the user community to offer their own perspectives about the value of research-led publications such as this Journal, about how links between researchers and users might be strengthened, and about how the uptake of applied ecology might be further advanced. [source]


Carnivore biodiversity in Tanzania: revealing the distribution patterns of secretive mammals using camera traps

ANIMAL CONSERVATION, Issue 2 2010
N. Pettorelli
Abstract Biodiversity monitoring is critical to assess the effectiveness of management activities and policy change, particularly in the light of accelerating impacts of environmental change, and for compiling national responses to international obligations and agreements. Monitoring methods able to identify species most likely to be affected by environmental change, and pinpoint those changes with the strongest impacts, will enable managers to target efforts towards vulnerable species and significant threats. Here we take a new approach to carnivore monitoring, combining camera-trap surveys with ecological niche factor analysis to assess distribution and patterns of habitat use of mammalian carnivore assemblages across northern Tanzania. We conducted 11 surveys over 430 camera-trap stations and 11 355 trap-days. We recorded 23 out of 35 carnivore species known to occur in Tanzania and report major extensions to the known distribution of the bushy-tailed mongoose Bdeogale crassicauda, previously thought to be rare. Carnivore biodiversity tended to be higher in national parks than in game reserves and forest reserves. We explored habitat use for seven species for which we had sufficient information. All species tended to be found near rivers and southern Acacia commiphora woodlands (except one mongoose species), and avoided deciduous shrubland, favouring deciduous woodland and/or open grassland. All species tended to avoid croplands suggesting that habitat conversion to agriculture could have serious implications for carnivore distribution. Our study provides a first example where camera-trap data are combined with niche analyses to reveal patterns in habitat use and spatial distribution of otherwise elusive and poorly known species and to inform reserve design and land-use planning. Our methodology represents a potentially powerful tool that can inform national and site-based wildlife managers and policy makers as well as international agreements on conservation. [source]


Incorporation of Recreational Fishing Effort into Design of Marine Protected Areas

CONSERVATION BIOLOGY, Issue 5 2006
TIM P. LYNCH
consulta pública; modelos de reservas marinas; pesca con caña; suposiciones de poza dinámica Abstract:,Theoretical models of marine protected areas (MPAs) that explore benefits to fisheries or biodiversity conservation often assume a dynamic pool of fishing effort. For instance, effort is homogenously distributed over areas from which subsets of reserves are chosen. I tested this and other model assumptions with a case study of the multiple-use Jervis Bay Marine Park. Prior to zoning of the park I conducted 166 surveys of the park's recreational fisheries, plotting the location of 16,009 anglers. I converted these plots into diagrams of fishing effort and analyzed correlates between fishing and habitat and the effect of two reserve designs,the draft and final zoning plans of the park,on the 15 fisheries observed. Fisheries were strongly correlated with particular habitats and had negatively skewed and often bimodal spatial distribution. The second mode of intensely fished habitat could be 6 SD greater than the fishery's mean allocation of effort by area. In the draft-zoning plan, sanctuary zone (no-take) area and potential subduction of fishing effort were similar. In the final plan, which was altered in response to public comment, the area of sanctuary zone increased, and the impact on fishing effort decreased. In only one case was a fishery's most intensely targeted location closed to fishing. Because of the discriminating manner with which fishers target habitats, if simple percentage targets are used for planning, sanctuary location can be adjusted to avoid existing fishing effort. According to modeled outcomes, the implication of this may be diminished reserve effectiveness. To address this, reserve area should be implicitly linked to subducted fishing effort when promoting or modeling MPAs. Resumen:,Los modelos teóricos de áreas marinas protegidas (AMPs) que exploran los beneficios para las pesquerías o la conservación de la biodiversidad a menudo asumen que hay una poza dinámica en el esfuerzo de pesca. Por ejemplo, el esfuerzo es distribuido homogéneamente en áreas en las que se seleccionan subconjuntos de reservas. Probé esta y otras suposiciones del modelo con un estudio de caso del Parque Marino Jarvis Bay. Antes de la zonificación del parque, realicé 166 muestreos de las pesquerías recreativas del parque, dibujando la localización de 16,009 pescadores con caña. Convertí estos dibujos en diagramas de esfuerzo de pesca y analicé las correlaciones entre la pesca, el hábitat y el efecto de dos diseños de reserva,el anteproyecto y los planes finales de zonificación del parque,sobre las 15 pesquerías observadas. Las pesquerías se correlacionaron fuertemente con los hábitats particulares y tenían una distribución espacial sesgada negativamente y a menudo bimodal. El segundo tipo de hábitat pescado intensivamente podría ser 6 DS mayor que la asignación promedio de esfuerzo de pesquería por unidad de área. En el anteproyecto de plan de zonificación, el área santuario (sin pesca) y la subducción potencial del esfuerzo de pesca eran similares. En el plan final, que fue alterado en respuesta a comentarios del público, el área del santuario fue incrementada, y el impacto del esfuerzo de pesca disminuyó. En solo un caso fue cerrado a la pesca la localidad de pesca más intensiva. Debido a la forma discriminada en que los pescadores eligen los hábitats, si se utilizan objetivos porcentuales simples para la planificación, la localización del santuario puede ser ajustada para evitar el esfuerzo de pesca existente. De acuerdo con los resultados del modelo, la implicación puede ser la disminución de la efectividad de la reserva. Para abordar esto, el área de la reserva debiera estar implícitamente relacionada con la reducción del esfuerzo de pesca cuando se promueven o modelan AMPs. [source]