Resistant Microorganisms (resistant + microorganism)

Distribution by Scientific Domains


Selected Abstracts


The withdrawal of antimicrobial treatment as a mechanism for defeating resistant microorganisms

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2008
David J. Stokes
Abstract Antimicrobial resistance is a major concern in health care and farming settings throughout the world. The level of antimicrobial resistance continues to increase and the requirement for a novel and possibly dramatic change in therapy choices is required. One possible mechanism for overcoming resistance is the actual removal of antimicrobial treatment from the therapeutic armoury. This review examines the potential for success of a policy advocating the reduction of antimicrobial use and additionally the withdrawal of such treatments. Evidence from agriculture suggests that the removal of certain drugs from animal husbandry can result in concomitant falls in certain drug resistances in human patients. [source]


Penicillin Binding Proteins: key players in bacterial cell cycle and drug resistance processes

FEMS MICROBIOLOGY REVIEWS, Issue 5 2006
Pauline Macheboeuf
Abstract Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful ,-lactam antibiotics. The increasing incidence of ,-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies. [source]


Antibiotic resistance profile of the subgingival microbiota following systemic or local tetracycline therapy

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 6 2004
Rosa Maria J. Rodrigues
Abstract Background: Tetracyclines have been extensively used as adjunctives to conventional periodontal therapy. Emergence of resistant strains, however, has been reported. This study evaluated longitudinally the tetracycline resistance patterns of the subgingival microbiota of periodontitis subjects treated with systemic or local tetracycline therapy+scaling and root planing (SRP). Methods: Thirty chronic periodontitis patients were randomly assigned to three groups: SRP+500 mg of systemic tetracycline twice/day for 14 days; SRP alone and SRP+tetracycline fibers (Actsite®) at four selected sites for 10 days. Subgingival plaque samples were obtained from four sites with probing pocket depths (PPD)6 mm in each patient at baseline, 1 week, 3, 6 and 12 months post-therapy. Samples were dispersed and diluted in pre-reduced anaerobically sterilized Ringer's solution, plated on Trypticase Soy Agar (TSA)+5% blood with or without 4 ,g/ml of tetracycline and incubated anaerobically for 10 days. The percentage of resistant microorganisms were determined and the isolates identified by DNA probes and the checkerboard method. Significance of differences among and within groups over time was sought using the Kruskal,Wallis and Friedman tests, respectively. Results: The percentage of resistant microorganisms increased significantly at 1 week in the tetracycline groups, but dropped to baseline levels over time. The SRP+Actsite® group presented the lowest proportions of resistant species at 6 and 12 months. No significant changes were observed in the SRP group. The predominant tetracycline-resistant species included Streptococcus spp., Veillonela parvula, Peptostreptococcus micros, Prevotella intermedia, Gemella morbillorum and Actinobacillus actinomycetemcomitans (Aa). A high percentage of sites with resistant Aa, Porphyromonas gingivalis and Tanerella forsythensis was observed in all groups at baseline. However, T. forsythensis was not detected in any group and P. gingivalis was not present in the SRP+Actsite® group at 1 year post-therapy. Aa was still frequently detected in all groups after therapy. However, the greatest reduction was observed in the SRP+Actsite® group. Conclusion: Local or systemically administered tetracycline results in transitory selection of subgingival species intrinsically resistant to this drug. Although the percentage of sites harboring periodontal pathogens resistant to tetracycline were quite elevated in this population, both therapies were effective in reducing their prevalence over time. [source]


Pharmaceutical antibiotic compounds in soils , a review

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2003
Sören Thiele-Bruhn
Antibiotics are highly effective, bioactive substances. As a result of their consumption, excretion, and persistence, they are disseminated mostly via excrements and enter the soils and other environmental compartments. Resulting residual concentrations in soils range from a few ,g upto g kg,1 and correspond to those found for pesticides. Numerous antibiotic molecules comprise of a non-polar core combined with polar functional moieties. Many antibiotics are amphiphilic or amphoteric and ionize. However, physicochemical properties vary widely among compounds from the various structural classes. Existing analytical methods for environmental samples often combine an extraction with acidic buffered solvents and the use of LC-MS for determination. In soils, adsorption of antibiotics to the organic and mineral exchange sites is mostly due to charge transfer and ion interactions and not to hydrophobic partitioning. Sorption is strongly influenced by the pH of the medium and governs the mobility and transport of the antibiotics. In particular for the strongly adsorbed antibiotics, fast leaching through soils by macropore or preferential transport facilitated by dissolved soil colloids seems to be the major transport process. Antibiotics of numerous classes are photodegraded. However, on soil surfaces this process if of minor influence. Compared to this, biotransformation yields a more effective degradation and inactivation of antibiotics. However, some metabolites still comprise of an antibiotic potency. Degradation of antibiotics is hampered by fixation to the soil matrix; persisting antibiotics were already determined in soils. Effects on soil organisms are very diverse, although all antibiotics are highly bioactive. The absence of effects might in parts be due to a lack of suitable test methods. However, dose and persistence time related effects especially on soil microorganisms are often observed that might cause shifts of the microbial community. Significant effects on soil fauna were only determined for anthelmintics. Due to the antibiotic effect, resistance in soil microorganisms can be provoked by antibiotics. Additionally, the administration of antibiotics mostly causes the formation of resistant microorganisms within the treated body. Hence, resistant microorganisms reach directly the soils with contaminated excrements. When pathogens are resistant or acquire resistance from commensal microorganisms via gene transfer, humans and animals are endangered to suffer from infections that cannot be treated with pharmacotherapy. The uptake into plants even of mobile antibiotics is small. However, effects on plant growth were determined for some species and antibiotics. Pharmazeutische Antibiotika in Böden , ein Überblick Antibiotika sind hochgradig wirksame, bioaktive Substanzen. Infolge ihrer Anwendung, Ausscheidung und Persistenz werden sie meist über die Exkremente in Böden und andere Umweltkompartimente eingetragen. Die resultierenden Rückstandskonzentrationen in Böden im Bereich von wenigen ,g bis zu g kg,1 entsprechen in etwa denen von Pflanzenschutzmitteln. Die Molekülstruktur von Antibiotika besteht häufig aus einem unpolaren Kern und polaren Randgruppen. Viele Antibiotika sind amphiphil oder amphoter und bilden Ionen, jedoch weisen die zahlreichen Antibiotika unterschiedlicher Strukturklassen stark divergierende physikochemische Eigenschaften auf. In den vorliegenden Nachweis"methoden für Umweltproben werden häufig sauer gepufferte Lösungsmittel zur Extraktion und eine Bestimmung mittels LC-MS kombiniert. Die Adsorption der Antibiotika an den organischen als auch an den mineralischen Bodenaustauschern erfolgt zumeist durch Ladungs- und Ionenwechselwirkungen und weniger durch hydrophobe Bindungen. Das Verteilungsverhalten hängt dabei entscheidend vom pH-Wert des Mediums ab und beeinflusst die Mobilität und Verlagerung der Antibiotika. Bei vielen, insbesondere stark adsorbierten Antibiotika sind v.,a. schnelle Fließvorgänge wie durch präferenziellen und Makroporenfluss sowie der Cotransport mit gelösten Bodenkolloiden von besonderer Bedeutung. Antibiotika vieler Strukturklassen können durch Licht abgebaut werden. Dieser Abbaupfad spielt auf Bodenoberflächen jedoch nur eine untergeordnete Rolle. Hingegen kommt es insbesondere durch biologische Transformationsprozesse zu einer intensiven Degradation und Inaktivierung der Antibiotika. Verschiedene Metaboliten weisen jedoch ebenfalls ein antibiotisches Potential auf. Der Abbau der Antibiotika wird durch die Festlegung in Böden gehemmt; dementsprechend wurde eine Persistenz verschiedener Antibiotika nachgewiesen. Trotz der starken bioaktiven Wirkung aller Antibiotika sind die festgestellten Effekte auf Bodenorganismen sehr unterschiedlich. Dies liegt nicht zuletzt an einem Mangel an geeigneten Testmethoden. In der Regel sind jedoch von Dosis und Wirkungsdauer abhängige Effekte insbesondere auf Mikroorganismen festzustellen, die zu Veränderungen der Mikroorganismenpopulation führen können. Lediglich durch Anthelmintika wurden deutliche Wirkungen auf Vertreter der Bodenfauna hervorgerufen. Infolge der antibiotischen Wirkung der Pharmazeutika kann eine Resistenzbildung bei Bodenorganismen ausgelöst werden. Zudem hat die Medikation von Antibiotika die Bildung resistenter Mikroorganismen bereits im behandelten Organismus zur Folge. Durch deren anschließende Ausscheidung gelangen resistente Keime auch direkt in die Böden. Handelt es sich um resistente Pathogene oder kommt es zur Übertragung der Resistenzgene zwischen kommensalen und pathogenen Mikroorganismen, so besteht das erhebliche Risiko einer nicht therapierbaren Infektion von Mensch und Tier. Die Aufnahme selbst mobiler Antibiotika in die Pflanzen ist sehr gering. Dennoch wurden bei einigen Pflanzenarten Wirkungen von Antibiotika auf das Wachstum nachgewiesen. [source]