Resin Particles (resin + particle)

Distribution by Scientific Domains


Selected Abstracts


An investigation on thermal-recycling of recycled plastic resin (spherically symmetric analysis of abrupt heating processes of a micro plastic-resin particle)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2006
Ryuji Yamakita
Abstract A fundamental understanding of the physical properties of a micro plastic-resin particle subjected suddenly to hot combustion gas, such as the temperature history in the micro particle and its lifetime, is necessary for effectively realizing thermal recycling of recycled plastic resin. However, micro plastic particles have such small diameters, ranging from 100 µm to 200 µm, that the measurement of temperature histories within them is extremely difficult. In this paper, therefore, a spherically symmetric one-dimensional analysis is applied to the abrupt heating process of a micro plastic resin particle in a high temperature inert atmosphere. Variations of the temperature history and the lifetime with the ambient gas temperature and the initial particle diameter are numerically analyzed, by dividing the entire heating process into four independent periods; the solid heating period, the melting period, the liquid heating period, and the vaporization period. Effects of the Nusselt number on the particle lifetime are also discussed. It is found that, by suitably taking account of the influences of heat transfer properties, the proposed simplified analysis is useful for estimating the fundamental and overall temperature characteristics of a micro plastic resin particle under abrupt heating. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(4): 279,293, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20113 [source]


The characterization and optimization of injectable silicone resin particles in conjunction with dermal fibroblasts and growth factors: An in vitro study

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2010
Robert M. Crews
Abstract Minimally invasive subdermal injection of liquid silicone has been used clinically to augment the soft tissue of the foot to mitigate high pressures that cause diabetic foot ulcers. However, implant migration has been a clinical issue. The objective of this study was to assess the effects of three specific concentrations of silicone resin particles (12 ,m average diameter) in conjunction with either platelet-derived growth factor (PDGF-BB) or basic fibroblast growth factor (bFGF) on fibroblast cell proliferation, collagen synthesis, cell morphology, and migration through in vitro assays and a monolayer scratch wound model. PDGF and bFGF enhanced the proliferation of fibroblasts 5.7-fold and fivefold, respectively, while the addition of silicone particles had no significant effect on proliferation. Collagen production was increased approximately twofold with the addition of bFGF and the medium concentration of particles over bFGF without particles and the PDGF groups. The addition of silicone particles had no significant effect on collagen production compared with control groups without particles. Fibroblast migration was enhanced by the addition of both PDGF and bFGF compared to controls, although slower scratch wound closure rates were observed in the presence of particles compared to controls without particles. Cell morphology suggested that particles induced cellular aggregation encircling silicone particles postwounding as well as migration into the wound area. These results suggest that silicone particles in combination with a growth factor might enhance fibroblast aggregation and implant stability, and could promote connective tissue ingrowth and implant encapsulation in the soft tissue of the diabetic foot. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010 [source]


Drug release properties of polymer coated ion-exchange resin complexes: Experimental and theoretical evaluation

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2007
Seong Hoon Jeong
Abstract Although ion-exchange resins have been used widely as drug delivery systems, their exact release kinetics has not been reported yet. Usually only the rate-limiting step has been taken into account and the rest of the steps have been ignored as instantaneous processes. To investigate the exact release kinetics of polymer-coated drug/ion-exchange resin complexes for sustained drug delivery, the results of new mathematical modeling were compared with experimental results. Drug/resin complexes with a model drug, dextromethorphan, were prepared and used as cores for fluid-bed coating. An aqueous colloidal dispersion of poly(vinyl acetate) was applied for the coating. A comprehensive mathematical model was developed using a mechanistic approach by considering diffusion, swelling, and ion-exchange processes solved by numerical techniques. The rate-limiting factor of the uncoated resin particles was diffusion through the core matrix. Similarly, in the coated particles the rate-limiting factor was diffusion through the coating membrane. The mathematical model has captured the phenomena observed during experimental evaluations and the release dynamics from uncoated and coated (at different coat levels) particles were predicted accurately (maximum RMSE 2.4%). The mathematical model is a useful tool to theoretically evaluate the drug release properties from coated ion-exchange complexes thus can be used for design purposes. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci [source]


Study of prelocalized graphite/styrene acrylonitrile conducting composites for device applications

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2006
V. K. Sachdev
Abstract Conductive polymer composites were prepared by compression molding of prelocalized graphite on to styrene acrylonitrile (SAN) particles. The electrical conductivity is found to be strongly dependent on the graphite content. Three different series were prepared for different processing and material parameters. A low percolation threshold has been noticed when only 1 wt% of graphite is incorporated. Resistivity as low as ,14 , cm has been achieved in a composite with SAN resin particles of 180,212 µm size and graphite 10,20 µm at 90 °C, 105 MPa and 15 min. An electrically conducting network of graphite channels has been observed using scanning electron microscopy. V,I characteristic reveals that at a lower percentage of graphite the increase in current with increase in electric field is due to the hopping/tunneling of electrons, while for higher percentages of graphite ohmic behavior similar to metals has been observed. The data has been analyzed using percolation model. The value of the exponent t that determines the increase in electrical conductivity above the percolation threshold is found to be close to the values given in the literature. The theoretically calculated values of conductivity are found to be in satisfactory agreement with the experimental ones. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Clustering behaviour in gas,liquid,solid circulating fluidized beds with low solid holdups of resin particles

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2010
Jianhua Liu
Abstract The flow in a gas,liquid,solid circulating fluidized bed is self-organised and manifests itself with clustering of particles and bubbles. The clustering behaviour in the fluidized bed at low solid holdups of resin particles was experimentally investigated with a high-speed image measurement and treatment technique of complementary metal oxide semiconductor to enhance the fundamental understanding on such a flow. Several new physical quantities were suggested to characterise such ordered flow structures. The main findings are as follows. The clusters of solid particles largely exist as doublets and triplets, the mixed groups of particles and bubbles mostly exist as one bubble carrying two to four particles. Increasing superficial liquid velocity, particle diameter or density weakens the aggregation degrees of both particle and mixed clusters in the riser and downer, except that the increase of superficial liquid velocity enhances the mixed clustering behaviour in the riser. The climbing of the auxiliary liquid velocity or liquid phase viscosity intensifies the aggregation behaviour, except that the increase of liquid phase viscosity reduces the mixed clustering degree in the riser. The influences of superficial gas velocity and surface tension of liquid phase on the clustering behaviour seem to be a little complex and the trends are not simply increasing or decreasing. The life cycle of solid particle clusters in the GLS riser is not sensitive to the operation conditions, being around 0.07,s. The mixed clusters' life cycle is more sensitive to the conditions and physical properties of phases, changing from 0.02 to 0.07,s. L'écoulement dans un lit fluidisé de circulation gaz-liquide-solide s'organise souvent de lui même et se manifeste avec l'agrégation des particules et des bulles. Le comportement de l'agrégation dans le lit fluidisé à faible retenue de particules de résine solide a été étudié expérimentalement en utilisant une technique d'imagerie ultra-rapide de mesure et de traitement à base de semi-conducteur complémentaire à l'oxyde de métal afin d'approfondir la compréhension fondamentale d'un tel écoulement. Plusieurs nouvelles quantités physiques ont été suggérées pour caractériser une telle structure d'écoulement auto-organisé. Les principaux résultats sont comme suit. Les agrégations de particules solides existent principalement en tant que doublets et triplets, les groupes mixtes de particules et de bulles existent pour la plupart sous la forme d'une bulle comportant deux à quatre particules. Une augmentation de la vitesse superficielle du liquide, du diamètre des particules ou de la densité affaiblit à la fois les degrés d'agrégation des particules et des agrégats mixtes dans la colonne montante et dans la colonne descendante, sauf que l'augmentation de la vitesse superficielle du liquide intensifie le comportement d'agrégation mixte dans la colonne montante. L'accroissement de la vitesse auxiliaire du liquide ou de la viscosité de la phase liquide intensifie le comportement d'agrégation, sauf que l'augmentation de la viscosité de la phase liquide réduit le degré d'agrégation mixte dans la colonne montante. Les influences de la vitesse superficielle du gaz et de la tension de surface de la phase liquide sur le comportement de l'agrégation semblent être quelque peu complexes et les tendances ne sont pas simplement croissantes ou décroissantes. Le cycle de vie des agrégats de particules solides dans la colonne gaz-liquide-solide montante n'est pas sensible aux facteurs, tournant autour de 0.07,s. Le cycle de vie des agrégats mixtes est plus sensible aux conditions de fonctionnement et aux caractéristiques physiques des phases, évoluant de 0.02 à 0.07,s. [source]