Home About us Contact | |||
Reproductively Isolated Populations (reproductively + isolated_population)
Selected AbstractsPERSPECTIVE: SEX, RECOMBINATION, AND THE EFFICACY OF SELECTION,WAS WEISMANN RIGHT?EVOLUTION, Issue 2 2000Austin Burt Abstract., The idea that sex functions to provide variation for natural selection to act upon was first advocated by August Weismann and it has dominated much discussion on the evolution of sex and recombination since then. The goal of this paper is to further extend this hypothesis and to assess its place in a larger body of theory on the evolution of sex and recombination. A simple generic model is developed to show how fitness variation and covariation interact with selection for recombination and illustrate some important implications of the hypothesis: (1) the advantage of sex and recombination can accrue both to reproductively isolated populations and to modifiers segregating within populations, but the former will be much larger than the latter; (2) forces of degradation that are correlated across loci within an individual can reduce or reverse selection for increased recombination; and (3) crossing-over (which can occur at different places in different meioses) will create more variability than having multiple chromosomes and so will have more influence on the efficacy of selection. Several long-term selection experiments support Weismann's hypothesis, including those showing a greater response to selection in populations with higher rates of recombination and higher rates of recombination evolving as a correlated response to selection for some other character. Weismann's hypothesis is also consistent with the sporadic distribution of obligate asexuality, which indicates that clones have a higher rate of extinction than sexuals. Weismann's hypothesis is then discussed in light of other patterns in the distribution of sexuality versus asexuality. To account for variation in the frequency of obligate asexuality in different taxa, a simple model is developed in which this frequency is a function of three parameters: the rate of clonal origin, the initial fitness of clones when they arise, and the rate at which that fitness declines over time. Variation in all three parameters is likely to be important in explaining the distribution of obligate asexuality. Facultative asexuality also exists, and for this to be stable it seems there must be ecological differences between the sexual and asexual propagules as well as genetic differences. Finally, the timing of sex in cyclical parthenogens is most likely set to minimize the opportunity costs of sex. None of these patterns contradict Weismann's hypothesis, but they do show that many additional principles unrelated to the function of sex are required to fully explain its distribution. Weismann's hypothesis is also consistent with what we know about the mechanics and molecular genetics of recombination, in particular the tendency for chromatids to recombine with a homolog rather than a sister chromatid at meiosis, which is opposite to what they do during mitosis. However, molecular genetic studies have shown that cis -acting sites at which recombination is initiated are lost by gene conversion as a result, a factor that can be expected to affect many fine details in the evolution of recombination. In summary, although Weismann's hypothesis must be considered the leading candidate for the function of sex and recombination, nevertheless, many additional principles are needed to fully account for their evolution. [source] Microgeographic population structure of brook charr: a comparison of microsatellite and mark-recapture dataJOURNAL OF FISH BIOLOGY, Issue 3 2003B. K. Adams Polymorphism at five microsatellite genetic markers (genotyped n = 496) and mark-recapture tagging data (tagged n = 9813) were used to define the population structure of brook charr, Salvelinus fontinalis from the Indian Bay watershed, Newfoundland, Canada. Despite the absence of physical barriers to migration among lakes, both genetic and tagging data suggest that brook charr in each lake represent reproductively isolated populations. Exact tests comparing allele frequencies, , (global value = 0ˇ063), Rst (global value = 0ˇ052), individual assignment tests, and Nei's genetic distance provided congruent estimates of population subdivision in agreement with the tagging data (only 2ˇ2% of recaptures were lake-to-lake). The genetic structure of the brook charr populations corresponded with the geographic structure of the drainage basin on a qualitative level, although linear distance over water was not significantly correlated with the tagging data or the genetic distance measures. The agreement between the tagging and the genetic data suggest that microsatellite markers can be useful tools for defining real biological units. The results also suggest that brook charr exhibit microgeographic population structure at the watershed scale, and that this is the scale at which conservation and management of this salmonid might best be implemented. [source] Adaptation of reef and mangrove sponges to stress: evidence for ecological speciation exemplified by Chondrilla caribensis new species (Demospongiae, Chondrosida)MARINE ECOLOGY, Issue 2007Klaus Rützler Abstract Sponges (Porifera) in mangroves have adapted to a wide range of environmental parameters except for extended periods of exposure to freshwater or air. Many marine mangrove islands are located in the shallow backwaters of coral reefs in Belize and elsewhere in the Caribbean and have a mean tidal range of only 15 cm. They are densely populated by sponges, mostly attached to subtidal red-mangrove stilt roots and peat banks lining tidal channels. Some species are endemic to mangroves, others are immigrants from nearby reefs. Mangrove endemics endure environmental hardships, such as occasional exposure to air during spring tides, temperature and salinity extremes, fine sediments, even burial in detritus. Reef immigrants into mangroves enjoy protection from spongivores that do not stray into the swamp but they eventually succumb to environmental stress. There is evidence exemplified by the common demosponge Chondrilla aff. nucula, that sponges flourishing in both mangrove and reef habitats may develop separate ecologically specialized and reproductively isolated populations. Such processes can lead to genetic modifications and thus serve as mechanisms for ecological speciation. Because Chondrilla nucula Schmidt was first described from the Mediterranean Sea, it was long suspected that the western Atlantic population may be a separate species. New morphological and molecular evidence prompt us to describe it under a new name, Chondrilla caribensis, with two ecological forms, forma caribensis from mangroves and lagoons, and forma hermatypica from open reefs. [source] Eastern and Western Poor Cod (Trisopterus minutus capelanus) Populations in the Mediterranean Sea: Evidence from Allozyme and Minisatellite LociMARINE ECOLOGY, Issue 4 2003Valeria Mattiangeli Abstract., Nine allozyme and two minisatellite loci were used to investigate potential genetic differentiation among three samples of Mediterranean poor cod, Trisopterus minutus capelanus, from the Gulf of Lion, the Tuscan Archipelago and the Aegean Sea. Both types of markers showed consistent results, with FST values of 0.0262 and 0.0296 (P < 0.0015, after Bonferroni correction for multiple tests) for allozymes and minisatellites, respectively. Allele frequency heterogeneity tests between pairs of samples showed a clear separation between the two western Mediterranean samples (Gulf of Lion, Tuscan Archipelago) and the eastern one (Aegean Sea). The results indicate that at least two reproductively isolated populations of poor cod occur in the Mediterranean. [source] Evaluating differences in linkage disequilibrium between populationsANNALS OF HUMAN GENETICS, Issue 3 2010Birgir Hrafnkelsson Summary We propose two methods to evaluate the statistical significance of differences in linkage disequilibrium (LD) between populations, where LD is measured by the standardised parameter D,. The first method is based on bootstrapping individuals within populations in order to test LD differences for each pair of loci. Using this approach we propose a solution to the problem of testing multiple locus-pairs by means of a single test for the number of pairs that exhibit significant LD differences among populations. The second method provides the Bayesian posterior probability that one population has greater LD than the other for each locus pair. Both methods can handle genotypes with unknown phase, and are demonstrated using two data sets. For the purpose of demonstration, we apply the methods to two different sets of data from humans. First, we explore the issue of LD differences between reproductively isolated populations using a new data set of twelve Xq25 microsatellites, typed in four European populations. Second, we examine evidence for LD differences between Alzheimer cases and controls from the Icelandic population using 19 single nucleotide polymorphisms (SNPs) from a 97 kb region flanking the Apolipoprotein E (APOE) gene on chromosome 19. [source] |