Reproductive Proteins (reproductive + protein)

Distribution by Scientific Domains


Selected Abstracts


Proteomics enhances evolutionary and functional analysis of reproductive proteins

BIOESSAYS, Issue 1 2010
Geoffrey D. Findlay
Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins. [source]


Major components of a sea urchin block to polyspermy are structurally and functionally conserved

EVOLUTION AND DEVELOPMENT, Issue 3 2004
Julian L. Wong
Summary One sperm fusing with one egg is requisite for successful fertilization; additional sperm fusions are lethal to the embryo. Because sperm usually outnumber eggs, evolution has selected for mechanisms that prevent this polyspermy by immediately modifying the egg extracellular matrix. We focus here on the contribution of cortical granule contents in the sea urchin block to polyspermy to begin to understand how well this process is conserved. We identified each of the major constituents of the fertilization envelope in two species of seaurchins, Strongylocentrotus purpuratus and Lytechinus variegatus, that diverged 30 to 50 million years ago. Our results show that the five major structural components of the fertilization envelope, derived from the egg cortical granules, are semiconserved. Most of these orthologs share sequence identity and encode multiple low-density lipoprotein receptor type A repeats or CUB domains but at least two contain radically different carboxy-terminal repeats. Using a new association assay, we also show that these major structural components are functionally conserved during fertilization envelope construction. Thus, it seems that this population of female reproductive proteins has retained functional motifs while gaining significant sequence diversity,two opposing paths that may reflect cooperativity among the proteins that compose the fertilization envelope. [source]


Proteomics enhances evolutionary and functional analysis of reproductive proteins

BIOESSAYS, Issue 1 2010
Geoffrey D. Findlay
Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins. [source]