Representative Genes (representative + gene)

Distribution by Scientific Domains


Selected Abstracts


Studies on diarrheagenic Escherichia coli isolated from children with diarrhea in Myanmar

MICROBIOLOGY AND IMMUNOLOGY, Issue 1 2008
Eizo Takahashi
ABSTRACT Escherichia coli isolates from 217 children in Myanmar with diarrhea were investigated for the presence of virulence genes related to diarrhea by colony hybridization and PCR. The genes examined were lt, stI, stII, stx1, stx2, eae, bfp, pCVD (which is the representative gene of plasmid of pCVD of EAEC), and ial (which is invasion-associated locus of the invasion plasmid found in EIEC). Isolates from 47 of 217 children (21.7%) possessed virulence genes characteristic of diarrheagenic E. coli. No instance was found of co-existence of different E. coli strains with different virulence genes in the same patient. Diarrheagenic E. coli are currently classified into five categories based on their virulence markers: ETEC, EHEC, EPEC, EAEC, and EIEC. Of the 47 isolates examined, 30 were EAEC, 12 were EPEC and 5 were ETEC. Susceptibility tests for antimicrobial agents showed that almost all diarrheagenic isolates were resistant to penicillin, tetracycline and streptomycin. However, the majority of strains were sensitive to cephalexin, nalidixic acid and norfloxacin. In particular, 42 of the 47 isolates were sensitive to norfloxacin, which is a fluoroquinolone. This study shows EAEC and EPEC are responsible for sporadic diarrhea in Myanmar and fluoroquinolones appear to be effective in the treatment of these patients. [source]


Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment

GENES, BRAIN AND BEHAVIOR, Issue 1 2008
J. Wang
A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 ,g/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5,22.1% and 4.1,14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine. [source]


HPV related VIN: Highly proliferative and diminished responsiveness to extracellular signals

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2007
Lindy A.M. Santegoets
Abstract Vulvar intraepithelial neoplasia (VIN) is a premalignant disorder caused by human papillomaviruses. Basic knowledge about the molecular pathogenesis of VIN is sparse. Therefore, we have analyzed the gene expression profile of 9 VIN samples in comparison to 10 control samples by using genome wide Affymetrix Human U133A plus2 GeneChips. Results were validated by quantitative real-time RT-PCR analysis and immunostaining of a few representative genes (TACSTD1, CCNE2, AR and ESR1). Significance analysis of microarrays (SAM) showed that 1,497 genes were differentially expressed in VIN compared to controls. By analyzing the biological processes affected by the observed differences, we found that VIN appears to be a highly proliferative disease; many cyclins (CCNA, CCNB and CCNE) and almost all prereplication complex proteins are upregulated. Thereby, VIN does not seem to depend for its proliferation on paracrine or endocrine signals. Many receptors (for example ESR1 and AR) and ligands are downregulated. Furthermore, although VIN is not an invasive disease, the inhibition of expression of a marked number of cell,cell adhesion molecules seems to indicate development towards invasion. Upon reviewing apoptosis and angiogenesis, it was observed that these processes have not become significantly disregulated in VIN. In conclusion: although VIN is still a premalignant disease, it already displays several hallmarks of cancer. © 2007 Wiley-Liss, Inc. [source]


Genome-wide analysis of the general stress response in Bacillus subtilis

MOLECULAR MICROBIOLOGY, Issue 4 2001
Chester W. Price
Bacteria respond to diverse growth-limiting stresses by producing a large set of general stress proteins. In Bacillus subtilis and related Gram-positive pathogens, this response is governed by the ,B transcription factor. To establish the range of cellular functions associated with the general stress response, we compared the transcriptional profiles of wild and mutant strains under conditions that induce ,B activity. Macroarrays representing more than 3900 annotated reading frames of the B. subtilis genome were hybridized to 33P-labelled cDNA populations derived from (i) wild-type and sigB mutant strains that had been subjected to ethanol stress; and (ii) a strain in which ,B expression was controlled by an inducible promoter. On the basis of their significant ,B -dependent expression in three independent experiments, we identified 127 genes as prime candidates for members of the ,B regulon. Of these genes, 30 were known previously or inferred to be ,B dependent by other means. To assist in the analysis of the 97 new genes, we constructed hidden Markov models (HMM) that identified possible ,B recognition sequences preceding 21 of them. To test the HMM and to provide an independent validation of the hybridization experiments, we mapped the ,B -dependent messages for seven representative genes. For all seven, the 5, end of the message lay near typical ,B recognition sequences, and these had been predicted correctly by the HMM for five of the seven examples. Lastly, all 127 gene products were assigned to functional groups by considering their similarity to known proteins. Notably, products with a direct protective function were in the minority. Instead, the general stress response increased relative message levels for known or predicted regulatory proteins, for transporters controlling solute influx and efflux, including potential drug efflux pumps, and for products implicated in carbon metabolism, envelope function and macromolecular turnover. [source]


Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
Antonino Baez
Abstract The effect of dissolved carbon dioxide (dCO2) concentration on the stoichiometric and kinetic constants and by-product accumulation was determined for Escherichia coli cells producing recombinant green fluorescent protein (GFP). Constant dCO2, in the range of 20,300,mbar, was maintained during batch cultures by manipulating the inlet gas composition. As dCO2 increased, specific growth rate (µ) decreased, and acetate accumulation and the time for onset of GFP production increased. Maximum biomass yield on glucose and GFP concentration were affected for dCO2 above 70 and 150,mbar, respectively. Expression analysis of 16 representative genes showed that E. coli can respond at the transcriptional level upon exposure to increasing dCO2, and revealed possible mechanisms responsible for the detrimental effects of high dCO2. Genes studied included those involved in decarboxylation reactions (aceF, icdA, lpdA, sucA, sucB), genes from pathways of production and consumption of acetate (ackA, poxB, acs, aceA, fadR), genes from gluconeogenic and anaplerotic metabolism (pckA, ppc), genes from the acid resistance (AR) systems (adiA, gadA, gadC), and the heterologous gene (gfp). The transcription levels of tricarboxylic acid (TCA) cycle genes (icdA, sucA, sucB) and glyoxylate shunt (aceA) decreased as dCO2 increased, whereas fadR (that codes for a negative regulator of the glyoxylate operon) and poxB (that codes for PoxB which is involved in acetate production from pyruvate) were up-regulated as dCO2 increased up to 150,mbar. Furthermore, transcription levels of genes from the AR systems increased as dCO2 increased up to 150,mbar, indicating that elevated dCO2 triggers an acid stress response in E. coli cells. Altogether, such results suggest that the increased acetate accumulation and reduction in µ, biomass yield and maximum GFP concentration under high dCO2 resulted from a lower carbon flux to TCA cycle, the concomitant accumulation of acetyl-CoA or pyruvate, and the acidification of the cytoplasm. Biotechnol. Bioeng. 2009; 104: 102,110 © 2009 Wiley Periodicals, Inc. [source]