Home About us Contact | |||
Representative Clones (representative + clone)
Selected AbstractsMicrobial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central AlpsENVIRONMENTAL MICROBIOLOGY, Issue 9 2006K. Deiglmayr Summary Changes in community structure and activity of the dissimilatory nitrate-reducing community were investigated across a glacier foreland in the Central Alps to gain insight into the successional pattern of this functional group and the driving environmental factors. Bulk soil and rhizosphere soil of Poa alpina was sampled in five replicates in August during the flowering stage and in September after the first snowfalls along a gradient from 25 to 129 years after deglaciation and at a reference site outside the glacier foreland (> 2000 years deglaciated). In a laboratory-based assay, nitrate reductase activity was determined colorimetrically after 24 h of anaerobic incubation. In selected rhizosphere soil samples, the community structure of nitrate-reducing microorganisms was analysed by restriction fragment length polymorphism (RFLP) analysis using degenerate primers for the narG gene encoding the active site of the membrane-bound nitrate reductase. Clone libraries of the early (25 years) and late (129 years) succession were constructed and representative clones sequenced. The activity of the nitrate-reducing community increased significantly with age mainly due to higher carbon and nitrate availability in the late succession. The community structure, however, only showed a small shift over the 100 years of soil formation with pH explaining a major part (19%) of the observed variance. Clone library analysis of the early and late succession pointed to a trend of declining diversity with progressing age. Presumably, the pressure of competition on the nitrate reducers was relatively low in the early successional stage due to minor densities of microorganisms compared with the late stage; hence, a higher diversity could persist in this sparse environment. These results suggest that the nitrate reductase activity is regulated by environmental factors other than those shaping the genetic structure of the nitrate-reducing community. [source] Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glassENVIRONMENTAL MICROBIOLOGY, Issue 5 2005Mark P. Franklin Summary The bacterioneuston is defined as the community of bacteria present within the neuston or sea surface microlayer. Bacteria within this layer were sampled using a membrane filter technique and bacterial diversity was compared with that in the underlying pelagic coastal seawater using molecular ecological techniques. 16S rRNA gene libraries of , 500 clones were constructed from both bacterioneuston and the pelagic water samples and representative clones from each library were sequenced for comparison of bacterial diversity. The bacterioneuston was found to have a significantly lower bacterial diversity than the pelagic seawater, with only nine clone types (ecotaxa) as opposed to 46 ecotaxa in the pelagic seawater library. Surprisingly, the bacterioneuston clone library was dominated by 16S rRNA gene sequences affiliated to two groups of organisms, Vibrio spp. which accounted for over 68% of clones and Pseudoalteromonas spp. accounting for 21% of the library. The dominance of these two 16S rRNA gene sequence types within the bacterioneuston clone library was confirmed in a subsequent gene probing experiment. 16S rRNA gene probes specific for these groups of bacteria were designed and used to probe new libraries of 1000 clones from both the bacterioneuston and pelagic seawater DNA samples. This revealed that 57% of clones from the bacterioneuston library hybridized to a Vibrio sp.-specific 16S rRNA gene probe and 32% hybridized to a Pseudoalteromonas sp.-specific 16S rRNA gene probe. In contrast, the pelagic seawater library resulted in only 13% and 8% of 16S rRNA gene clones hybridizing to the Vibrio sp. and Pseudoalteromonas sp. probes respectively. Results from this study suggest that the bacterioneuston contains a distinct population of bacteria and warrants further detailed study at the molecular level. [source] Microbial communities in roots of Pinus sylvestris seedlings with damping-off symptoms in two forest nurseries as determined by ITS1/2 rDNA sequencingFOREST PATHOLOGY, Issue 4 2009H. Kwa Summary A methodological molecular procedure, which included extraction and cloning of the ITS1/2 rDNA of root-associated organisms with subsequent transformation and sequencing of representative clones, was effective for detection, discrimination and determination of the frequency of the main damping-off pathogens in roots of Pinus sylvestris seedlings growing in different forest-tree nursery soils and exhibiting different rates of disease progress. Roots exhibiting slower damping-off progression were colonized by Fusarium oxysporum, Neonectria radicicola (Ascomycota) and Pythium spp. (Oomycota), which comprised 50% of the microbial community. Roots exhibiting faster damping-off progression were dominated by Thanatephorus cucumeris (Basidiomycota), which comprised 80% of the microbial community. The microbial community was more diverse in roots with slower damping-off progression (14 species) than in roots with faster disease progression (seven species). [source] Bacterial diversity of the digestive gland of Sydney rock oysters, Saccostrea glomerata infected with the paramyxean parasite, Marteilia sydneyiJOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2010T.J. Green Abstract Aims:, To determine whether the infestation by the protozoan paramyxean parasite, Marteilia sydneyi, changes the bacterial community of the digestive gland of Sydney rock oysters, Saccostrea glomerata. Methods and Results:, Six 16S rDNA clone libraries were established from three M. sydneyi -infected and three un-infected oysters. Restriction enzyme analysis followed by sequencing representative clones revealed a total of 23 different operational taxonomic units (OTUs) in un-infected oysters, comprising the major phyla: Firmicutes, Proteobacteria, Cyanobacteria and Spirocheates, where the clone distribution was 44, 36, 7 and 5%, respectively. Close to half of the OTUs are not closely related to any other hitherto determined sequence. In contrast, S. glomerata infected by M. sydneyi had only one OTU present in the digestive gland. Phylogenetic analysis of the 16S rDNA sequence reveals that this dominant OTU, belonging to the ,-Proteobacteria, is closely related to a Rickettsiales -like prokaryote (RLP). Conclusions:, The microbiota of the digestive gland of Sydney rock oysters is changed by infection by M. sydneyi, becoming dominated by a RLP, and generally less diverse. The bacterial community of un-infected S. glomerata differs from previous studies in that we identified the dominant taxa as Firmicutes and ,-Proteobacteria, rather than heterotrophic ,-Proteobacteria. Significance and Impact of the Study:, This is the first culture-independent study of the microbiota of the digestive glands of edible oysters to the species level. The commercial viability of the Sydney rock oyster industry in Australia is currently threatened by Queensland Unknown disease and the changes in the bacterial community of S. glomerata corresponding with infection by M. sydneyi sheds further light on the link between parasite infection and mortality in this economically damaging disease. [source] |