Reporter Protein (reporter + protein)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


The stop transfer sequence of the human UDP-glucuronosyltransferase 1A determines localization to the endoplasmic reticulum by both static retention and retrieval mechanisms

FEBS JOURNAL, Issue 4 2005
Lydia Barré
Human UDP-glucuronosyltransferase 1A (UGT1A) isoforms are endoplasmic reticulum (ER)-resident type I membrane proteins responsible for the detoxification of a broad range of toxic phenolic compounds. These proteins contain a C-terminal stop transfer sequence with a transmembrane domain (TMD), which anchors the protein into the membrane, followed by a short cytosolic tail (CT). Here, we investigated the mechanism of ER residency of UGT1A mediated by the stop transfer sequence by analysing the subcellular localization and sensitivity to endoglycosidases of chimeric proteins formed by fusion of UGT1A stop transfer sequence (TMD/CT) with the ectodomain of the plasma membrane CD4 reporter protein. We showed that the stop transfer sequence, when attached to C-terminus of the CD4 ectodomain was able to prevent it from being transported to the cell surface. The protein was retained in the ER indicating that this sequence functions as an ER localization signal. Furthermore, we demonstrated that ER localization conferred by the stop transfer sequence was mediated in part by the KSKTH retrieval signal located on the CT. Interestingly, our data indicated that UGT1A TMD alone was sufficient to retain the protein in ER without recycling from Golgi compartment, and brought evidence that organelle localization conferred by UGT1A TMD was determined by the length of its hydrophobic core. We conclude that both retrieval mechanism and static retention mediated by the stop transfer sequence contribute to ER residency of UGT1A proteins. [source]


Ycf1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae

FEBS JOURNAL, Issue 11 2003
Olivier Gueldry
In Saccharomyces cerevisiae, disruption of the YCF1 gene increases the sensitivity of cell growth to mercury. Transformation of the resulting ycf1 null mutant with a plasmid harbouring YCF1 under the control of the GAL promoter largely restores the wild-type resistance to the metal ion. The protective effect of Ycf1p against the toxicity of mercury is especially pronounced when yeast cells are grown in rich medium or in minimal medium supplemented with glutathione. Secretory vesicles from S. cerevisiae cells overproducing Ycf1p are shown to exhibit ATP-dependent transport of bis(glutathionato)mercury. Moreover, using ,-galactosidase as a reporter protein, a relationship between mercury addition and the activity of the YCF1 promoter can be shown. Altogether, these observations indicate a defence mechanism involving an induction of the expression of Ycf1p and transport by this protein of mercury,glutathione adducts into the vacuole. Finally, possible coparticipation in mercury tolerance of other ABC proteins sharing close homology with Ycf1p was investigated. Gene disruption experiments enable us to conclude that neither Bpt1p, Yor1p, Ybt1p nor YHL035p plays a major role in the detoxification of mercury. [source]


Silencing of choline acetyltransferase expression by lentivirus-mediated RNA interference in cultured cells and in the adult rodent brain

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2009
Julie Santamaria
Abstract RNA interference (RNAi) is a potent mechanism for local silencing of gene expression and can be used to study loss-of-function phenotypes in mammalian cells. We used RNAi to knockdown specifically the expression of choline acetyltransferase (ChAT), the enzyme of acetylcholine biosynthesis, both in cultured cells and in the adult brain. We first identified a 19-nucleotide sequence in the coding region of rat and mouse ChAT transcripts that constitutes a target for potent silencing of ChAT expression by RNAi. We generated a lentiviral vector that produces both a small hairpin RNA (shRNA) targeting ChAT mRNAs and the enhanced green fluorescent protein (EGFP) reporter protein to facilitate identification of transduced cells. In the cholinergic cell line NG108-15, there was at least 90% less of the ChAT protein, as measured by assaying its enzymatic activity, 3 days postinfection with this vector than in cells infected with a control vector. The vector was used to transduce cholinergic neurons in vivo and reduced ChAT expression strongly and specifically in the cholinergic neurons of the medial septum in adult rats, without affecting the expression of the vesicular acetylcholine transporter. This lentiviral vector is thus a powerful tool for specific inactivation of cholinergic neurotransmission and can therefore be used to study the role of cholinergic nuclei in the brain. This lentiviral-mediated RNAi approach will also allow the development of new animal models of diseases in which cholinergic neurotransmission is specifically altered. © 2008 Wiley-Liss, Inc. [source]


Double-stranded RNA-activated protein kinase inhibits hepatitis C virus replication but may be not essential in interferon treatment

LIVER INTERNATIONAL, Issue 2 2010
Jin-Hai Chang
Abstract Background: Double-stranded RNA-activated protein kinase (PKR), an interferon (IFN)-stimulated gene, is activated by binding with double-stranded RNA, a putative replicative intermediate of the hepatitis C virus (HCV). Activated PKR phosphorylates the , subunit of eukaryotic initiation factor-2 to inhibit the translation of viral protein. Aims/methods: We established stable PKR knockdown Huh7 cells using RNA interference and investigated the effect of PKR against HCV replication using a subgenomic replicon that expressed luciferase reporter protein and the JFH1 full-length HCV genome. Results: In stable PKR knockdown cells that harboured a subgenomic replicon, luciferase activity was approximately three times higher than that of control cells, indicating that the subgenomic replicon replicated with a higher efficiency in stable PKR knockdown cells than that in control cells. Furthermore, stable PKR knockdown cells secreted significantly more HCV particles than did control cells after transfection with the full-length HCV genome. The replication of the subgenomic replicon was suppressed by the addition of IFN-, in both cells. Although the extent of suppression was significantly lower in stable PKR knockdown than control cells using a low concentration (2.5,5 U/ml) of IFN-,, even 10 U/ml IFN-, suppressed the replication of subgenomic replicon by >98% in both cells. Conclusions: Double-stranded RNA-activated protein kinase plays an important role in suppressing HCV replication in an innate state, but may not be essential in IFN therapy. [source]


Mitochondria and calcium homeostasis: a tale of three luminescent proteins

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2001
Paulo J. Magalhães
Abstract In recent years the jellyfish Aequorea victoria has provided the scientific community with a pair of tools of exceptional usefulness: aequorin and the green fluorescent protein (GFP). Whereas the former has played a major role in the study of calcium signalling, the latter has sparked the imagination of researchers into a myriad of elegant experiments. The firefly Photinus pyralis has also been of great use, providing a third luminescent protein, luciferase, which is mostly known for its role as a reporter protein. Concurrent use of these three proteins provides a powerful means of elucidating biological processes with fine spatio-temporal detail. Here we will illustrate how specific molecular engineering of these three proteins provided a set of biological tools capable of generating important data in the field of calcium homeostasis. First, we will show how the use of specifically targeted aequorin chimeras enabled the measurement of regional Ca2+ concentrations; second, how the use of GFP (and derived chromatic mutants) permitted detailed morphological analyses in living cells; third, how luciferase was used to analyse energetic requirements at the subcellular level. Together, these three experimental approaches have provided important details on how mitochondria participate actively in calcium homeostasis. A final note regarding clinical implications demonstrates the practical usefulness of the data obtained. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Restricted transgene persistence after lentiviral vector-mediated fetal gene transfer in the pregnant rabbit model

THE JOURNAL OF GENE MEDICINE, Issue 9 2008
Rafael Moreno
Abstract Background Prenatal gene transfer may enable early causal intervention for the treatment or prevention of many devastating diseases. Nevertheless, permanent correction of most inherited disorders requires a sustained level of expression from the therapeutic transgene, which could theoretically be achieved with integrating vectors. Methods Rabbit fetuses received 8.5 × 106 HIV-based recombinant lentivirus particles containing the enhanced green fluorescent protein (EGFP) transgene by intrahepatic, intra-amniotic or intraperitoneal injection at 22 days of gestation. Provirus presence and transgene expression in rabbit tissues were evaluated at both 1.5 and 16 weeks post- in utero intervention by polymerase chain reaction (PCR) and reverse transcriptase-PCR, respectively. Moreover, we assessed persistence of EGFP by immunohistochemistry. Enzyme-linked immunosorbent assays confirmed the development of antibodies specific against both the viral vector and the reporter protein. Results Regardless of the route of administration employed, lentiviral vector-based in utero gene transfer was safe and reached 85% of the intervened fetuses at birth. However, the integrated provirus frequency was significantly reduced to 50% of that in young rabbits at 16 weeks post-treatment. In these animals, EGFP expression was evident in many tissues, including cytokeratin 5-rich basal cells from stratified and pseudostratified epithelia, suggesting that the lentiviral vector might have reached progenitor cells. Conversely, we identified the presence of immune-inflammatory infiltrates in several EGFP-expressing tissues. Moreover, almost 70% of the lentiviral vector-treated rabbits elicited a humoral immune response against the viral envelope and/or the EGFP. Conclusions At two-thirds gestational age, the adaptive immune system of the rabbit appears a relevant factor limiting transgene persistence and expression following lentiviral vector-mediated in utero gene transfer. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal mice

THE JOURNAL OF GENE MEDICINE, Issue 4 2006
Elena Fedorova
Abstract Background Direct injection of lentivectors into the central nervous system (CNS) mostly results in localized parenchymal transgene expression. Intrathecal gene delivery into the spinal canal may produce a wider dissemination of the transgene and allow diffusion of secreted transgenic proteins throughout the cerebrospinal fluid (CSF). Herein, we analyze the distribution and expression of LacZ and SEAP transgenes following the intrathecal delivery of lentivectors into the spinal canal. Methods Four weeks after intrathecal injection into the spinal canal of newborn mice, the expression of the LacZ gene was assessed by histochemical staining and by in situ polymer chain reaction (PCR). Following the spinal infusion of a lentivector carrying the SEAP gene, levels of enzymatically active SEAP were measured in the CSF, blood serum, and in brain extracts. Results Intrathecal spinal canal delivery of lentivectors to newborn mice resulted in patchy, widely scattered areas of ,-gal expression mostly in the meninges. The transduction of the meningeal cells was confirmed by in situ PCR. Following the spinal infusion of a lentivector carrying the SEAP gene, sustained presence of the reporter protein was detected in the CSF, as well as in blood serum, and brain extracts. Conclusions These findings indicate that intrathecal injections of lentivectors can provide significant levels of transgene expression in the meninges. Unlike intracerebral injections of lentivectors, intrathecal gene delivery through the spinal canal appears to produce a wider diffusion of the transgene. This approach is less invasive and may be useful to address those neurological diseases that benefit from the ectopic expression of soluble factors impermeable to the blood-brain barrier. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Analysis of genetic control elements in eukaryotes: Transcriptional activity or nuclear hitchhiking?

BIOESSAYS, Issue 12 2001
Muriel Zohar
A common way to analyse basal and stimulated activity of eukaryotic genetic control elements, such as promoters and enhancers, is to introduce them into cells via DNA vectors containing an easily assayable reporter gene. Activity is then studied by measurement of transiently produced mRNA or reporter protein. In such assays, it is assumed that the variable measured is proportional to the transcriptional activity of the control element under investigation. Here we question the validity of this generally accepted assumption. Specifically, recent observations indicate that control elements, in addition to modulating transgene transcription, can facilitate the nuclear uptake of their carrier plasmids. This process is mediated by transcription factors or other nuclear proteins harbouring nuclear localisation signals, which bind to the control elements in the cytoplasm and transport the DNA into the nucleus through the protein nuclear import machinery. As the number of mRNA transcripts produced for an epi-chromosomally expressed transgene is directly related to its copy number inside the nucleus, such transport activity may lead to substantial overestimation of the transcriptional potency of the control element(s) studied. BioEssays 23:1176,1179, 2001. © 2001 John Wiley & Sons, Inc. [source]


Evaluation of Production Parameters with the Vaccinia Virus Expression System Using Microcarrier Attached HeLa Cells

BIOTECHNOLOGY PROGRESS, Issue 2 2005
Nicole A. Bleckwenn
Parameters that affect production of the recombinant reporter protein, EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system were examined. Length of infection phase, inducer concentration, and timing of its addition relative to infection were evaluated in 6-well plate monolayer cultures. One hour infection with 1.0 mM IPTG added at the time of infection provided a robust process. For larger scale experiments, anchorage-dependent HeLa cells were grown on 5 g/L Cytodex 3 microcarriers. The change to this dynamic culture environment, with cell-covered microcarriers suspended in culture medium in spinner flasks, suggested a re-examination of the multiplicity of infection (MOI) for this culture type that indicated a need for an increase in the number of virus particles per cell to 5.0, higher than that needed for complete infection in monolayer tissue flask culture. Additionally, dissolved oxygen level and temperature during the protein production phase were evaluated for their effect on EGFP expression in microcarrier spinner flask culture. Both increased dissolved oxygen, based on surface area to volume (SA/V) adjustments, and decreased temperature from 37 to 31 °C showed increases in EGFP production over the course of the production phase. The level of production achieved with this system reached approximately 17 ,g EGFP/106 infected cells. [source]


Transgenic mice expressing a dual, CRE-inducible reporter for the analysis of axon guidance and synaptogenesis,

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 6 2007
Aurora Badaloni
Abstract Improved and modular tools are needed for the neuroanatomical dissection of CNS axonal tracts, and to study the cell-intrinsic and cell-extrinsic cues that govern their assembly and plasticity. Here we describe a general purpose transgenic tracer that can be used to visualize axonal tracts and synaptic terminals in any region of the embryonic neural tube or postnatal CNS, on any wild type or mutant genetic background. The construct permits CRE-inducible expression of a dicistronic axonal marker encoding two surface reporter proteins: a farnesylated GFP and the human Placental Alkaline Phosphatase (PLAP). Both proteins localize alongside the neuronal surface, permitting the concomitant detection of cell body, neurites, and presynaptic and postsynaptic sites in the same neuron. This provides a CRE-inducible dual system for imaging neural circuits in vivo, and to study their assembly and remodeling in cultured neurons, neural stem cells, and tissue explants derived from the reporter line. Unlike existing lines, this reporter does not encode a ubiquitously expressed, floxable LacZ gene, permitting the simultaneous analysis of beta galactosidase activity in mutant lines. genesis 45:405,412, 2007. © 2007 Wiley-Liss, Inc. [source]


Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2008
G. Mathiesen
Abstract Aims:, To test seven selected putative signal peptides from Lactobacillus plantarum WCFS1 in terms of their ability to drive secretion of two model proteins in Lact. plantarum, and to compare the functionality of these signal peptides with that of well-known heterologous signal peptides (Usp45, M6). Methods and Results:, Signal peptide functionality was assessed using a series of modular derivatives of the pSIP vectors for peptide pheromone-controlled high-level gene expression in lactobacilli. Several of the constructs with homologous signal peptides yielded similar or higher reporter protein activities than constructs with heterologous signal peptides. Two of the homologous signal peptides (Lp_0373 and Lp_0600) appeared as especially promising candidates for directing secretion, as they were among the best performing with both reporter proteins. Conclusions:, We have identified homologous signal peptides for high-level secretion of heterologous proteins in Lact. plantarum. With the model proteins, some of these performed better than commonly used heterologous signal peptides. Significance and Impact of the Study:, The homologous signal peptides tested out, in this study, could be useful in food-grade systems for secretion of interesting proteins in Lact. plantarum. The constructed modular secretion vectors are easily accessible for rapid signal peptide screening. [source]


In Vivo Gene Transfer Studies on the Regulation and Function of the Vasopressin and Oxytocin Genes

JOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2003
D. Murphy
Abstract Novel genes can be introduced into the germline of rats and mice by microinjecting fertilized one-cell eggs with fragments of cloned DNA. A gene sequence can thus be studied within the physiological integrity of the resulting transgenic animals, without any prior knowledge of its regulation and function. These technologies have been used to elucidate the mechanisms by which the expression of the two genes in the locus that codes for the neuropeptides vasopressin and oxytocin is confined to, and regulated physiologically within, specific groups of neurones in the hypothalamus. A number of groups have described transgenes, derived from racine, murine and bovine sources, in both rat and mouse hosts, that mimic the appropriate expression of the endogenous vasopressin and genes in magnocellular neurones (MCNs) of the supraoptic and paraventricular nuclei. However, despite considerable effort, a full description of the cis -acting sequences mediating the regulation of the vasopressin-oxytocin locus remains elusive. Two general conclusions have nonetheless been reached. First, that the proximal promoters of both genes are unable to confer any cell-specific regulatory controls. Second, that sequences downstream of the promoter, within the structural gene and/or the intergenic region that separates the two genes, are crucial for appropriate expression. Despite these limitations, sufficient knowledge has been garnered to specifically direct the expression of reporter genes to vasopressin and oxytocin MCNs. Further, it has been shown that reporter proteins can be directed to the regulated secretory pathway, from where they are subject to appropriate physiological release. The use of MCN expression vectors will thus enable the study of the physiology of these neurones through the targeted expression of biologically active molecules. However, the germline transgenic approach has a number of limitations involving the interpretation of phenotypes, as well as the large cost, labour and time demands. High-throughput somatic gene transfer techniques, principally involving the stereotaxic injection of hypothalamic neuronal groups with replication-deficient adenoviral vectors, are now being developed that obviate these difficulties, and which enable the robust, long-lasting expression of biologically active proteins in vasopressin and oxytocin MCNs. [source]


In Vitro synthesis and activity of reporter proteins in an Escherichia coli S30 extract system: An undergraduate experiment,

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 6 2005
Pamela J. Higgins
Abstract This undergraduate laboratory experiment integrates multiple techniques (in vitro synthesis, enzyme assays, Western blotting) to determine the production and detection sensitivity of two common reporter proteins (,-galactosidase and luciferase) within an Escherichia coli S30 transcription/translation extract. Comparison of the data suggests that luciferase is the more suitable reporter for this specific in vitro extract system. Simple modifications in the experimental design allow for flexibility in the use of materials and the time required to perform the study. Furthermore, extension into additional experiments and alternative techniques are also discussed. [source]


Lighting up gap junction channels in a flash

BIOESSAYS, Issue 10 2002
W. Howard Evans
Gap junction intercellular communication channels permit the exchange of small regulatory molecules and ions between neighbouring cells and coordinate cellular activity in diverse tissue and organ systems. These channels have short half-lives and complex assembly and degradation pathways. Much of the recent work elucidating gap junction biogenesis has featured the use of connexins (Cx), the constituent proteins of gap junctions, tagged with reporter proteins such as Green Fluorescent Protein (GFP) and has illuminated the dynamics of channel assembly in live cells by high-resolution time-lapse microscopy. With some studies, however, there are potential short-comings associated with the GFP chimeric protein technologies. A recent report by Gaietta et al., has highlighted the use of recombinant proteins with tetracysteine tags attached to the carboxyl terminus of Cx43, which differentially labels ,old' and ,new' connexins thus opening up new avenues for studying temporal and spatial localisation of proteins and in situ trafficking events.1 BioEssays 24:876,880, 2002. © 2002 Wiley Periodicals, Inc. [source]


Calcium phosphate transfection generates mammalian recombinant cell lines with higher specific productivity than polyfection

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2008
Sebastien Chenuet
Abstract Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines. Biotechnol. Bioeng. © 2008 Wiley Periodicals, Inc. [source]