Reporter Gene Constructs (reporter + gene_construct)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Distal enhancer of the mouse FGF-4 gene and its human counterpart exhibit differential activity: Critical role of a GT box

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2005
Brian Boer
Abstract Previous studies have shown that there is a strict requirement for fibroblast growth factor-4 (FGF-4) during mammalian embryogenesis, and that FGF-4 expression in embryonic stem (ES) cells and embryonal carcinoma (EC) cells are controlled by a powerful downstream distal enhancer. More recently, mouse ES cells were shown to express significantly more FGF-4 mRNA than human ES cells. In the work reported here, we demonstrate that mouse EC cells also express far more FGF-4 mRNA than human EC cells. Using a panel of FGF-4 promoter/reporter gene constructs, we demonstrate that the enhancer of the mouse FGF-4 gene is approximately tenfold more active than its human counterpart. Moreover, we demonstrate that the critical difference between the mouse and the human FGF-4 enhancer is a 4 bp difference in the sequence of an essential GT box. Importantly, we demonstrate that changing 4 bp in the human enhancer to match the sequence of the mouse GT box elevates the activity of the human FGF-4 enhancer to the same level as that of the mouse enhancer. We extended these studies by examining the roles of Sp1 and Sp3 in FGF-4 expression. Although we demonstrate that Sp3, but not Sp1, can activate the FGF-4 promoter when artificially tethered to the FGF-4 enhancer, we show that Sp3 is not essential for expression of FGF-4 mRNA in mouse ES cells. Finally, our studies with human EC cells suggest that the factor responsible for mediating the effect of the mouse GT box is unlikely to be Sp1 or Sp3, and this factor is either not expressed in human EC cells or it is not sufficiently active in these cells. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source]


pMesogenin1 and 2 function directly downstream of Xtbx6 in Xenopus somitogenesis and myogenesis

DEVELOPMENTAL DYNAMICS, Issue 12 2008
Shunsuke Tazumi
Abstract T-box transcription factor tbx6 and basic-helix-loop-helix transcription factor pMesogenin1 are reported to be involved in paraxial mesodermal differentiation. To clarify the relationship between these genes in Xenopus laevis, we isolated pMesogenin2, which showed high homology with pMesogenin1. Both pMesogenin1 and 2 appeared to be transcriptional activators and were induced by a hormone-inducible version of Xtbx6 without secondary protein synthesis in animal cap assays. The pMesogenin2 promoter contained three potential T-box binding sites with which Xtbx6 protein was shown to interact, and a reporter gene construct containing these sites was activated by Xtbx6. Xtbx6 knockdown reduced pMesogenin1 and 2 expressions, but not vice versa. Xtbx6 and pMesogenin1 and 2 knockdowns caused similar phenotypic abnormalities including somite malformation and ventral body wall muscle hypoplasia, suggesting that Xtbx6 is a direct regulator of pMesogenin1 and 2, which are both involved in somitogenesis and myogenesis including that of body wall muscle in Xenopus laevis. Developmental Dynamics 237:3749,3761, 2008. © 2008 Wiley-Liss, Inc. [source]


An enhancer sequence directs LacZ expression to developing pharyngeal endoderm in transgenic mice

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2001
Hema Parmar
Abstract Summary: The murine Hoxc-6 homeobox gene comprises three exons with two distinct promoters (PRI and PRII) located 9 kb apart. To characterise the PRII promoter, a region 3 kb upstream of the transcription start site was sequenced, and an Antananapedia-like consensus binding sequence was found (Coletta et al., 1991). A LacZ reporter gene construct, containing three copies of this sequence, directs highly specific expression in cells forming pharyngeal endoderm in transgenic mice. Expression was first detected in a few individual anterior endoderm cells at E7.5, which increase in number up to E9.5, where expression was clearly visible in the pharyngeal endoderm. Expression of the endodermal genes HNF3,, Pax-9, Shh, and Nkx2.5 showed colocalization with the LacZ -positive cells in the foregut and pharyngeal endoderm. This novel enhancer provides a means of tracking the morphogenetic movement of endodermal cells fated to form the foregut. genesis 31:57,63, 2001. © 2001 Wiley-Liss, Inc. [source]


Novel two-stage screening procedure leads to the identification of a new class of transfection enhancers

THE JOURNAL OF GENE MEDICINE, Issue 6 2006
Birgit Neukamm
Abstract Background Non-viral gene transfer efficiency is low as compared to viral vector systems. Here we describe the discovery of new drugs that are capable of enhancing non-viral gene transfer into mammalian cells using a novel two-stage screening procedure. Methods First, potential candidates are preselected from a molecular library at various concentrations by a semi-automated yeast transfection screen (YTS). The maximal transfection efficiency of every positive drug is subsequently determined in independent experiments at the optimal concentration and compared to the inhibitory effect of the drug on cell growth (IC50). In a subsequent mammalian cell transfection screen (MTS), the maximal transfection efficiency and the IC50 are determined for all preselected drugs using a human cell line and a luciferase reporter gene construct. Results Employing our novel system we have been able to identify a new class of transfection enhancers, the tricyclic antidepressants (i.e. doxepin, maprotiline, desipramine and amoxapine). All positive drugs enhanced gene transfer in both yeast and human cell lines, but lower concentrations were sufficient for mammalian cells. With a triple combination of doxepin, amoxapine and chloroquine we obtained a transfection efficiency that exceeded that of chloroquine, one of the best-known transfection enhancers of mammalian cells, by nearly one order of magnitude. Conclusions Non-viral gene transfer efficiency can be increased significantly using new transfection enhancers that are identified by a novel, semi-automated two-stage screening system employing yeast cells in the first and specific human target cells in the second round. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Analysis of regulatory elements of E-cadherin with reporter gene constructs in transgenic mouse embryos

DEVELOPMENTAL DYNAMICS, Issue 2 2003
Marc P. Stemmler
Abstract Proper regulation of E-cadherin,mediated cell adhesion is important during early embryonic development and in organogenesis. In mice, E-cadherin is expressed from the fertilized egg onward and becomes down-regulated during gastrulation in mesoderm and its derivatives, but its expression is maintained in all epithelia. E-cadherin promoter analyses led to the identification of binding sites for two transcriptional repressors, Snail and SIP1, which are able to mediate down-regulation in vitro, but little is known about the regulatory elements that govern E-cadherin transcriptional activity in vivo. Here, we compared the developmentally regulated expression of a series of lacZ -reporter transgenes fused to different sequences of the murine E-cadherin gene between ,6 kb, including the promoter, and +16 kb, covering one third of intron 2. Four different segments with distinct regulatory properties were identified. The promoter fragment from +0.1 to ,1.5 kb remains inactive in most cases but occasionally induces ectopic expression in mesodermal tissues, although it contains binding sites for the repressors Snail and SIP1. This promoter fragment also lacks positive elements needed for the activation of transcription in ectoderm and endoderm. Sequences from ,1.5 to ,6 kb harbor regulatory elements for brain-specific expression and, in addition, insulator or silencer elements, because they are consistently inactive in the mesoderm. Only if sequences from +0.1 to +11 kb are combined with the promoter fragments is E-cadherin,specific transgene expression observed in endoderm and certain epithelia. Sequences between +11 and +16 kb contain cis -active elements that generally enhance transcription. Our analyses show that E-cadherin expression is governed by a complex interplay of multiple regulatory regions dispersed throughout large parts of the locus. Developmental Dynamics 227:238,245, 2003. © 2003 Wiley-Liss, Inc. [source]


Acholeplasma laidlawii up-regulates granulysin gene expression via transcription factor activator protein-1 in a human monocytic cell line, THP-1

IMMUNOLOGY, Issue 3 2001
Yutaka Kida
Summary An antimicrobial protein granulysin is constitutively expressed in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. However, little is known about the precise regulatory mechanisms underlying granulysin gene expression. In this study, we examined the regulatory mechanisms underlying granulysin gene expression using a human monocytic cell line, THP-1, treated with Acholeplasma laidlawii. The level of granulysin mRNA expression in THP-1 cells was significantly augmented in response to stimulation with A. laidlawii. The transfection of reporter gene constructs into THP-1 cells indicated that DNA sequences between residues ,329 and ,239, relative to the transcriptional start site of the granulysin gene, are responsible for mediating gene induction. In addition, mutagenesis of a putative activator protein-1 (AP-1)-binding site between residues ,277 and ,271 in the granulysin promoter resulted in the reduction of granulysin promoter activity. Electrophoretic mobility shift assays (EMSA) demonstrated that nuclear extract prepared from A. laidlawii- treated THP-1 cells can generate specific binding to DNA oligonucleotides encompassing the AP-1-binding site, whereas unstimulated nuclear extract from the cells failed to do so. Furthermore, competition and supershift assays confirmed that A. laidlawii can induce the activation of AP-1. These results indicate that AP-1 dominantly participates in the regulation of inducible granulysin gene expression in THP-1 cells. Therefore, the finding of inducible granulysin gene expression by A. laidlawii suggests that inducible granulysin in macrophages may function as a protective weapon when microbial invasion occurs. [source]


An intron enhancer activates the immunoglobulin-related Hemolin gene in Hyalophora cecropia

INSECT MOLECULAR BIOLOGY, Issue 5 2002
K. Roxström-Lindquist
Abstract Hemolin is the only insect member of the immunoglobulin (Ig) superfamily reported to be up-regulated during an immune response. In diapausing pupae of Hyalophora cecropia the gene is expressed in fat body cells and in haemocytes. Like the mammalian Ig , light chain gene, the Hemolin gene harbours an enhancer including a ,B motif in one of its introns. This motif binds the H. cecropia Rel factor Cif (Cecropia immunoresponsive factor). The Hemolin third intron also mediates transient reporter gene expression in immunoresponsive Drosophila mbn-2 cells. Co-transfections of Drosophila SL2 cells showed that the Drosophila Rel factor Dif (Dorsal-related immunity factor), transactivates reporter gene constructs through the intron. Moreover, a 4.8-fold synergistic activation was obtained when Dif is combined with the rat C/EBP (CCAAT/enhancer element-binding protein) and human HMGI (high mobility group protein I). This is the first report of an insect immune-related gene that is up-regulated by an enhancer activity conferred through an intron. [source]


Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2003
Kwok Keung Chan
Abstract SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis, overexpression of genes coding for structural myelin proteins such as P0 due to mutant SOX10 may explain the dysmyelination phenotype observed in the patients with an additional neurological disorder. © 2003 Wiley-Liss, Inc. [source]


Chromium (VI) inhibits heme oxygenase-1 expression in vivo and in arsenic-exposed human airway epithelial cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
Kimberley A. O'Hara
Inhaled hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms. One hypothesis for this lung pathogenesis is that Cr(VI) silences induction of cytoprotective genes, such as heme oxygenase-1 (HO-1), whose total lung mRNA levels were reduced 21 days after nasal instillation of potassium dichromate in C57BL/6 mice. To investigate the mechanisms for this inhibition, Cr(VI) effects on basal and arsenic (As(III))-induced HO-1 expression were examined in cultured human bronchial epithelial (BEAS-2B) cells. An effect of Cr(VI) on the low basal HO-1 mRNA and protein levels in BEAS-2B cells was not detectible. In contrast, Cr(VI) added to the cells before As(III), but not simultaneously with As(III), attenuated As(III)-induced HO-1 expression. Transient transfection with luciferase reporter gene constructs controlled by the full length ho-1 promoter or deletion mutants demonstrated that this inhibition occurred in the E1 enhancer region containing critical antioxidant response elements (ARE). Cr(VI) pretreatment inhibited As(III)-induced activity of a transiently expressed reporter construct regulated by three ARE tandem repeats. The mechanism for this Cr(VI)-attenuated transactivation appeared to be Cr(VI) reduction of the nuclear levels of the transcription factor Nrf2 and As(III)-stimulated Nrf2 transcriptional complex binding to the ARE cis element. Finally, exposing cells to Cr(VI) prior to co-exposure with As(III) synergized for apoptosis and loss of membrane integrity. These data suggest that Cr(VI) silences induction of ARE-driven genes required for protection from secondary insults. The data also have important implications for understanding the toxic mechanisms of low level, mixed metal exposures in the lung. J. Cell. Physiol. 209: 113,121, 2006. © 2006 Wiley-Liss, Inc. [source]


The effect of a promoter polymorphism on the transcription of nitric oxide synthase 1 and its relevance to Parkinson's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2009
Terrie Rife
Abstract Transcriptional changes of the enzyme nitric oxide synthase I (NOS1) are believed to play a role in the development of many diseases. The gene for NOS1 has 12 alternative first exons (1A,1L). The 1F exon is one of the most highly utilized first exons in the brain and has a polymorphism ((TG)mTA(TG)n) located in its promoter region. The polymorphism's length has been suggested to affect NOS1 transcription and play a role in Parkinson's disease (PD); however, the actual influence of the polymorphism on NOS1 transcription has not been studied. To better characterize the links of the polymorphism with PD, a genotyping study was done comparing polymorphism length among 170 PD patients and 150 age-matched controls. The pattern of changes between the two group's allele frequencies shows statistical significance (P = 0.0359). The smallest polymorphism sizes are more predominant among PD patients than controls. To study the effects of this polymorphism on NOS1 gene transcription, reporter gene constructs were made by cloning the NOS1 1F promoter with polymorphism lengths of either 42, 54, or 62 bp in front of the luciferase gene and transfecting them into HeLa or Sk-N-MC cells. NOS1-directed reporter gene constructs with the 62-bp polymorphism increased transcription of luciferase 2.2-fold in HeLa and 1.8-fold in Sk-N-MC cells compared with reporter gene constructs with the 42-bp polymorphism. These data suggest that if smaller polymorphism size contributes to the higher NOS1 levels in PD patients, an as yet unknown transcriptional mechanism is required. © 2009 Wiley-Liss, Inc. [source]


STRUCTURAL FEATURES OF NUCLEAR GENES IN THE CENTRIC DIATOM THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE)

JOURNAL OF PHYCOLOGY, Issue 5 2000
E. Virginia Armbrust
Thalassiosira weissflogii (Grun.) Fryxell et Hasle is one of the more commonly studied centric diatoms, and yet molecular studies of this organism are still in their infancy. The ability to identify open reading frames and thus distinguish between introns and exons, coding and noncoding sequence is essential to move from nuclear DNA sequences to predicted amino acid sequences. To facilitate the identification of open reading frames in T. weissflogii, two newly identified nuclear genes encoding ,-tubulin and t -complex polypeptide (TCP)-,, along with six previously published nuclear DNA sequences, were examined for general structural features. The coding region of the nuclear open reading frames had a G + C content of about 49% and could readily be distinguished from noncoding sequence due to a significant difference in G + C content. The introns were uniformly small, about 100 base pairs in size. Furthermore, the 5, and 3, splice sites of introns displayed the canonical GT/AG sequence, further facilitating recognition of noncoding regions. Six of the nuclear open reading frames displayed relatively little bias in the use of synonymous codons, as exemplified by the cDNAs encoding ,-tubulin and TCP-,. Two open reading frames displayed strong bias in the use of particular codons (although the codons used were different), as exemplified by the cDNA encoding fucoxanthin chlorophyll a/c binding protein. Knowledge of codon bias should facilitate, for example, design of degenerate PCR primers and potential heterologous reporter gene constructs. [source]


The functional ,443T/C osteopontin promoter polymorphism influences osteopontin gene expression in melanoma cells via binding of c-Myb transcription factor

MOLECULAR CARCINOGENESIS, Issue 1 2009
Julia Schultz
Abstract In the present report, the possible role of a recently described functional polymorphism of the osteopontin (OPN) promoter at position ,443 (,443T/C) for OPN expression in melanoma cells was addressed. As shown by real-time PCR analysis, melanoma metastases that were homozygous for the ,443C allele expressed significantly higher levels of OPN mRNA compared with those that were either heterozygous (,443T/C) or homozygous for the ,443T allele. In line with this, immunoblotting showed significantly enhanced baseline and bFGF-induced OPN protein expression in melanoma cell lines which were homozygous for the ,443C allele, compared with cell lines with other allelic variants. Similar results were obtained in in vitro luciferase assays. Chromatin immunoprecipitation (ChIP) demonstrated binding of c-Myb to the ,443 OPN promoter region, and binding could significantly be enhanced after bFGF stimulation. Moreover, as shown by electrophoretic mobility shift assays (EMSA), recombinant DNA-binding domain of c-Myb bound in a sequence-specific manner to this region. Finally, the role of c-Myb for OPN gene regulation via binding to the ,443 promoter region could be further substantiated by ectopic overexpression of c-Myb in melanoma cells, using different reporter gene constructs. Taken together, it is demonstrated that the ,443 promoter region exerts influence on OPN gene expression in melanoma cells, and differential binding of c-Myb transcription factor appears to play a major role in this process. These findings might be a feasible explanation for different OPN expression levels in metastatic tumors and may also have prognostic and therapeutic relevance. © 2008 Wiley-Liss, Inc. [source]


Phosphate sensing in higher plants

PHYSIOLOGIA PLANTARUM, Issue 1 2002
Steffen Abel
Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi-starvation responses. [source]


Analysis of the function, expression, and subcellular distribution of human tristetraprolin

ARTHRITIS & RHEUMATISM, Issue 5 2002
Seth A. Brooks
Objective The zinc-finger protein tristetraprolin (TTP) has been demonstrated to regulate tumor necrosis factor , (TNF,) messenger RNA (mRNA) instability in murine macrophages. We sought to develop a model system to characterize the effects of human TTP (hTTP) on TNF, 3,-untranslated region (3,-UTR)-mediated expression. We also generated a specific polyclonal antibody against hTTP that enabled the examination of the subcellular distribution of hTTP and its RNA binding in vivo. Methods Transfection of reporter gene constructs were used to functionally characterize the role of hTTP in regulating TNF, expression in a 3,-UTR-dependent manner. An immunoprecipitation reverse transcription-polymerase chain reaction technique, immunoblotting, immunocytochemistry, and sucrose density fractionation were used to identify and localize hTTP. Results We found that hTTP interacted with human TNF, mRNA in the cytoplasm. The presence of the TNF, 3,-UTR was sufficient to confer binding by TTP in vivo. This interaction resulted in reduced luciferase reporter gene activity in a TNF, 3,-UTR adenine-uridine-rich element (ARE)-dependent manner. Immunoblotting and immunocytochemistry indicated that endogenous and transfected hTTP localized to the cytoplasm. Results of sucrose density fractionation studies were consistent with a polysomal location of hTTP. In rheumatoid synovium, hTTP expression was restricted to cells in the synovial lining layers. Conclusion Through the development of an antiserum specific for hTTP, we have been able to demonstrate that hTTP binds specifically to the TNF, 3,-UTR and reduces reporter gene expression in an ARE-specific manner. These studies establish that hTTP is likely to function in a similar, if not identical manner, in the posttranscriptional regulation of TNF,. Understanding the posttranscriptional regulation of TNF, biosynthesis is important for the development of novel treatment strategies in rheumatoid arthritis. [source]