Repolarization Phases (repolarization + phase)

Distribution by Scientific Domains


Selected Abstracts


Electrocardiographic Indices of Left Ventricular Hypertrophy and Repolarization Phase Share the Same Genetic Influences: A Twin Study

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 4 2009
Sara Mutikainen M.Sc.
Background: Both left ventricular hypertrophy (LVH) and repolarization phase (RP) are known to be attributable to genetic influences, but less is known whether they share same genetic influences. The aim of this study was to investigate to what extent individual differences in electrocardiographic (ECG) LVH and RP are explained by genetic and environmental influences and whether these influences are shared between these two traits. Methods: Resting ECG recordings were obtained from 186 monozygotic and 203 dizygotic female twin individuals, aged 63 to 76 years. Latent factors, called LVH and RP, were formed to condense the information obtained from LVH indices (Cornell voltage and Cornell product) and T-wave amplitudes (leads V5 and II), respectively. Multivariate quantitative genetic modeling was used both to decompose the phenotypic variances into additive genetic, common environmental, and unique environmental influences, and for the calculation of genetic and environmental correlations between LVH and RP. Results: Additive genetic influences explained 16% of individual differences in LVH and 74% in RP. The remaining individual differences were explained by both common and unique environmental influences. The genetic correlation and unique environmental correlation between LVH and RP were ,0.93 and ,0.05, respectively. Conclusions: In older women without overt cardiac diseases, RP is under stronger genetic control than LVH. The majority of genetic influences are shared between LVH and RP whereas environmental influences are mainly specific to each. [source]


Lack of Effect of Conduction Direction on Action Potential Durations in Anisotropic Ventricular Strips of Pig Heart

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2002
GUILLERMO BERTRAN B.Sc.
Anisotropy and Repolarization.Introduction: The influence of activation sequence on the rate of rise of the depolarization phase of action potentials in atrial or ventricular muscles has been well established. However, whether myocardial fiber orientation is important in modulating the repolarization process is unclear. Methods and Results: We examined the influence of activation sequence on the repolarization phase of action potentials in epicardial tissues from the right and left ventricles of domestic pigs. Whereas cells from the right ventricle exhibited direction-dependent differences in action potential duration at 30%, 50%, and 90% of full repolarization (190.6 ± 31.1 msec vs 181.8 ± 32.8 msec, 240.3 ± 23.5 msec vs 236.7 ± 25.4 msec, and 291.3 ± 23.7 msec vs 287.4 ± 25.1 msec for longitudinal and transverse propagation, respectively; P < 0.001), a similar duration of repolarization during both directions of propagation was observed in cells from the left ventricle at 50% and 90% of full repolarization (241.4 ± 39.4 msec and 285.5 ± 39.5 msec vs 240.4 ± 38.9 msec and 284.9 ± 39.6 msec for longitudinal and transverse propagation respectively; P = NS). A slight but significant difference was found at 30% of full repolarization in cells from the left ventricle (190.4 ± 39.0 msec vs 187.0 ± 38.0 msec for longitudinal and transverse propagation, respectively; P < 0.05). In the left ventricle, the duration of repolarization did not change as the distance between the recording site and stimulation site increased. Conclusion: The direction of wavefront propagation with respect to fiber orientation may not play an important role in modulating the duration of repolarization in epicardial cells from the left ventricle. [source]


Electrocardiographic Indices of Left Ventricular Hypertrophy and Repolarization Phase Share the Same Genetic Influences: A Twin Study

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 4 2009
Sara Mutikainen M.Sc.
Background: Both left ventricular hypertrophy (LVH) and repolarization phase (RP) are known to be attributable to genetic influences, but less is known whether they share same genetic influences. The aim of this study was to investigate to what extent individual differences in electrocardiographic (ECG) LVH and RP are explained by genetic and environmental influences and whether these influences are shared between these two traits. Methods: Resting ECG recordings were obtained from 186 monozygotic and 203 dizygotic female twin individuals, aged 63 to 76 years. Latent factors, called LVH and RP, were formed to condense the information obtained from LVH indices (Cornell voltage and Cornell product) and T-wave amplitudes (leads V5 and II), respectively. Multivariate quantitative genetic modeling was used both to decompose the phenotypic variances into additive genetic, common environmental, and unique environmental influences, and for the calculation of genetic and environmental correlations between LVH and RP. Results: Additive genetic influences explained 16% of individual differences in LVH and 74% in RP. The remaining individual differences were explained by both common and unique environmental influences. The genetic correlation and unique environmental correlation between LVH and RP were ,0.93 and ,0.05, respectively. Conclusions: In older women without overt cardiac diseases, RP is under stronger genetic control than LVH. The majority of genetic influences are shared between LVH and RP whereas environmental influences are mainly specific to each. [source]


Characterization of depolarization and repolarization phases of mitochondrial membrane potential fluctuations induced by tetramethylrhodamine methyl ester photoactivation

FEBS JOURNAL, Issue 7 2005
Angela M. Falchi
Depolarization and repolarization phases (D and R phases, respectively) of mitochondrial potential fluctuations induced by photoactivation of the fluorescent probe tetramethylrhodamine methyl ester (TMRM) were analyzed separately and investigated using specific inhibitors and substrates. The frequency of R phases was significantly inhibited by oligomycin and aurovertin (mitochondrial ATP synthase inhibitors), rotenone (mitochondrial complex I inhibitor) and iodoacetic acid (inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase). Succinic acid (mitochondrial complex II substrate, given in the permeable form of dimethyl ester) abolished the rotenone-induced inhibition of R phases. Taken together, these findings indicate that the activity of both respiratory chain and ATP synthase were required for the recovery of the mitochondrial potential. The frequency of D phases prevailed over that of R phases in all experimental conditions, resulting in a progressive depolarization of mitochondria accompanied by NAD(P)H oxidation and Ca2+ influx. D phases were not blocked by cyclosporin A (inhibitor of the permeability transition pore) or o -phenyl-EGTA (a Ca2+ chelator), suggesting that the permeability transition pore was not involved in mitochondrial potential fluctuations. [source]


Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (KCa) and connexins: possible relationship to vasodilator function?

JOURNAL OF ANATOMY, Issue 5 2006
Shaun L. Sandow
Abstract Activation of endothelial cell small- (S) and intermediate- (I) conductance calcium-activated potassium channels (KCa) and current or molecular transfer via myoendothelial gap junctions underlies endothelium-derived hyperpolarization leading to vasodilation. The mechanism underlying the KCa component of vasodilator activity and the characteristics of gap junctions are targets for the selective control of vascular function. In the rat mesenteric artery, where myoendothelial gap junctions and connexin (Cx) 40 are critical for the transmission of the endothelial cell hyperpolarization to the smooth muscle, SKCa and IKCa provide different facets of the endothelium-derived hyperpolarization response, being critical for the hyperpolarization and repolarization phases, respectively. The present study addressed the question of whether this functional separation of responses may be related to the spatial localization of the associated channels? The distribution of endothelial SKCa and IKCa and Cx subtype(s) were examined in the rat mesenteric artery using conventional confocal and high-resolution ultrastructural immunohistochemistry. At the internal elastic lamina,smooth muscle cell interface at internal elastic lamina holes (as potential myoendothelial gap junction sites), strong punctate IKCa, Cx37 and Cx40 expression was present. SKCa, Cx37, Cx40 and Cx43 were localized to adjacent endothelial cell gap junctions. High-resolution immunohistochemistry demonstrated IKCa and Cx37-conjugated gold to myoendothelial gap junction-associated endothelial cell projections. Clear co-localization of KCa and Cxs suggests a causal relationship between their activity and the previously described differential functional activation of SKCa and IKCa. Such precise localizations may represent a selective target for control of vasodilator function and vascular tone. [source]