Repolarization Dispersion (repolarization + dispersion)

Distribution by Scientific Domains


Selected Abstracts


Ventricular Fibrillation Induced by Stretch Pulse: Implications for Sudden Death Due to Commotio Cordis

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 9 2006
FRANK BODE M.D.
Introduction: Nonpenetrating chest wall impact (commotio cordis) may lead to sudden cardiac death due to the acute initiation of ventricular fibrillation (VF). VF may result from sudden stretch during a vulnerable window, which is determined by repolarization inhomogeneity. Methods: We examined action potential morphologies and VF inducibility in response to sudden myocardial stretch in the left ventricle (LV). In six Langendorff perfused rabbit hearts, the LV was instrumented with a fluid-filled balloon. Increasing volume and pressure pulses were applied at different times of the cardiac cycle. Monophasic action potentials (MAPs) were recorded simultaneously from five LV epicardial sites. Inter-site dispersion of repolarization was calculated in the time and voltage domains. Results: Sudden balloon inflation induced VF when pressure pulses of 208,289 mmHg were applied within a window of 35,88 msec after MAP upstroke, a period of intrinsic increase in repolarization dispersion. During the pressure pulse, MAPs revealed an additional increase in repolarization dispersion (time domain) by 9 ± 6 msec (P < 0.01). The maximal difference in repolarization levels (voltage domain) between sites increased from 19 ± 3% to 26 ± 3% (P < 0.05). Earliest stretch-induced activation was observed near a site with early repolarization, while sites with late repolarization showed delayed activation. Conclusions: Sudden myocardial stretch can elicit VF when it occurs during a vulnerable window that is based on repolarization inhomogeneity. Stretch pulses applied during this vulnerable window can lead to nonuniform activation. Repolarization dispersion might play a crucial role in the occurrence of fatal tachyarrhythmias during commotio cordis. [source]


Effects of acute vagal nerve stimulation on the early passive electrical changes induced by myocardial ischaemia in dogs: heart rate-mediated attenuation

EXPERIMENTAL PHYSIOLOGY, Issue 8 2008
Carlos L. Del Rio
Parasympathetic activity during acute coronary artery occlusion (CAO) can protect against ischaemia-induced malignant arrhythmias; nonetheless, the mechanism mediating this protection remains unclear. During CAO, myocardial electrotonic uncoupling is associated with autonomically mediated immediate (i.e. type 1A) arrhythmias and can modulate pro-arrhythmic dispersion of repolarization. Therefore, the effects of acutely enhanced or decreased cardiac parasympathetic activity on early electrotonic coupling during CAO, as measured by myocardial electrical impedance (MEI), were investigated. Anaesthetized dogs were instrumented for MEI measurements, and left circumflex coronary arterial occlusions were performed in intact (CTRL) and vagotomized (VAG) animals. The CAO was followed by either vagotomy (CTRL) or vagal nerve stimulation (VNS, 10 Hz, 10 V) in the VAG dogs. Vagal nerve stimulation was studied in two additional sets of animals. In one set heart rate (HR) was maintained by pacing (220 beats min,1), while in the other set bilateral stellectomy preceded CAO. The MEI increased after CAO in all animals. A larger MEI increase was observed in vagotomized animals (+85 ± 9 ,, from 611 ± 24 ,, n= 16) when compared with intact control dogs (+43 ± 5 ,, from 620 ± 20 ,, n= 7). Acute vagotomy during ischaemia abruptly increased HR (from 155 ± 11 to 193 ± 15 beats min,1) and MEI (+12 ± 1.1 ,, from 663 ± 18 ,). In contrast, VNS during ischaemia (n= 11) abruptly reduced HR (from 206 ± 6 to 73 ± 9 beats min,1) and MEI (,16 ± 2 ,, from 700 ± 44 ,). These effects of VNS were eliminated by pacing but not by bilateral stellectomy. Vagal nerve stimulation during CAO also attenuated ECG-derived indices of ischaemia (e.g. ST segment, 0.22 ± 0.03 versus 0.15 ± 0.03 mV) and of rate-corrected repolarization dispersion [terminal portion of T wave (TPEc), 84.5 ± 4.2 versus 65.8 ± 5.9 ms; QTc, 340 ± 8 versus 254 ± 16 ms]. Vagal nerve stimulation during myocardial ischaemia exerts negative chronotropic effects, limiting early ischaemic electrotonic uncoupling and dispersion of repolarization, possibly via a decreased myocardial metabolic demand. [source]


Ventricular Fibrillation Induced by Stretch Pulse: Implications for Sudden Death Due to Commotio Cordis

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 9 2006
FRANK BODE M.D.
Introduction: Nonpenetrating chest wall impact (commotio cordis) may lead to sudden cardiac death due to the acute initiation of ventricular fibrillation (VF). VF may result from sudden stretch during a vulnerable window, which is determined by repolarization inhomogeneity. Methods: We examined action potential morphologies and VF inducibility in response to sudden myocardial stretch in the left ventricle (LV). In six Langendorff perfused rabbit hearts, the LV was instrumented with a fluid-filled balloon. Increasing volume and pressure pulses were applied at different times of the cardiac cycle. Monophasic action potentials (MAPs) were recorded simultaneously from five LV epicardial sites. Inter-site dispersion of repolarization was calculated in the time and voltage domains. Results: Sudden balloon inflation induced VF when pressure pulses of 208,289 mmHg were applied within a window of 35,88 msec after MAP upstroke, a period of intrinsic increase in repolarization dispersion. During the pressure pulse, MAPs revealed an additional increase in repolarization dispersion (time domain) by 9 ± 6 msec (P < 0.01). The maximal difference in repolarization levels (voltage domain) between sites increased from 19 ± 3% to 26 ± 3% (P < 0.05). Earliest stretch-induced activation was observed near a site with early repolarization, while sites with late repolarization showed delayed activation. Conclusions: Sudden myocardial stretch can elicit VF when it occurs during a vulnerable window that is based on repolarization inhomogeneity. Stretch pulses applied during this vulnerable window can lead to nonuniform activation. Repolarization dispersion might play a crucial role in the occurrence of fatal tachyarrhythmias during commotio cordis. [source]


Dispersion of QT Intervals: A Measure of Dispersion of Repolarization or Simply a Projection Effect?

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 9 2000
DIEGO DI BERNARDO
QT interval dispersion may provide little information about repolarization dispersion. Some clinical measurements demonstrate an association between high QT interval dispersion and high morbidity and mortality, but what is being measured is not clear. This study was designed to help resolve this dilemma. We compared the association between different clinical measures of QT interval dispersion and the ECG lead amplitudes derived from a heart vector model of repolarization with no repolarization dispersion whatsoever. We compared our clinical QT interval dispersion data obtained from 25 subjects without cardiac disease with similar data from published studies, and correlated these QT dispersion results with the distribution of lead amplitudes derived from the projection of the heart vector onto the body surface during repolarization. Published results were available for mean relative QT intervals and mean differences from the maximum QT interval. The leads were derived from Uijen and Dower lead vector data. Using the Uijen lead vector data, the correlation between measurements of dispersion and derived lead amplitudes ranged from 0.78 to 0.99 for limb leads, and using the Dower values ranged from 0.81 to 0.94 for the precordial leads. These results show a clear association between the measured QT interval dispersion and the variation in ECG lead amplitudes derived from a simple heart vector model of repolarization with no regional information. Therefore, measured QT dispersion is related mostly to a projection effect and is not a true measure of repolarization dispersion. Our existing interpretation of QT dispersion must be reexamined, and other measurements that provide true repolarization dispersion data investigated. [source]