Renal I/R (renal + r)

Distribution by Scientific Domains


Selected Abstracts


Effect of renal and non-renal ischemia/reperfusion on cell-mediated immunity in organs and plasma

APMIS, Issue 2 2010
ANNE C. BRØCHNER
Brøchner AC, Dagnæs-Hansen F, Toft P. Effect of renal and non-renal ischemia/reperfusion on cell-mediated immunity in organs and plasma. APMIS 2010; 118: 101,7. Acute renal failure (ARF) is a common morbidity factor among patients in the intensive care unit, reaching an incidence from 3% to 30% depending on the definition of ARF and the population. Although the majority of the patients with ARF are treated with continuous renal replacement therapy, the mortality rate still remains above 50%. The causes of death are primarily extra-renal and include infection, shock, septicemia, and respiratory failure. We wanted to evaluate the cell-mediated inflammatory response of renal ischemia,reperfusion (I/R) and non-renal I/R, in blood and in distant organs. In our study, 80 mice were divided into four groups. The following surgeries were performed on the groups compared: bilateral renal I/R by clamping, unilateral renal ischemia, anesthesia only, and unilateral hind leg I/R. Half of the animals were killed after 2 h and the other half after 24 h. To assess the inflammatory response, we measured myeloperoxidase (MPO) in the organs, and CD 11b and major histocompatibility complex (MHC) II-positive cells in the blood. Non-renal I/R elicited the most elevated levels of MPO in extra-renal tissue such as the lungs. There was a trend toward higher MPO levels in the kidney following renal I/R. All kinds of I/R induced an upregulation of the adhesion molecule CD 11b and a downregulation of MHC II. Renal and non-renal I/R induced neutrophil infiltration in distant organs. Renal I/R does not induce a larger cell-mediated inflammatory response in blood and organs than non-renal I/R. [source]


Early Renal Ischemia-Reperfusion Injury in Humans Is Dominated by IL-6 Release from the Allograft

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2009
D. K. De Vries
The pathophysiology of ischemia/reperfusion (I/R) injury is complex, and current knowledge of I/R injury in humans is incomplete. In the present study, human living-donor kidney transplantation was used as a highly reproducible model to systematically study various processes potentially involved in early I/R injury. Unique, direct measurements of arteriovenous concentration differences over the kidney revealed massive release of interleukin (IL)-6 in the first 30 minutes of graft reperfusion and a modest release of IL-8. Among the assessed markers of oxidative and nitrosative stress, only 15(S)-8- iso -PGF2, was released. When assessing cell activation, release of prothrombin factor 1 + 2 indicated thrombocyte activation, whereas there was no release of markers for endothelial activation or neutrophil activation. Common complement activation complex sC5b-9 was not released into the bloodstream, but was released into urine rapidly after reperfusion. To investigate whether IL-6 plays a modulating role in I/R injury, a mouse experiment of renal I/R injury was performed. Neutralizing anti-IL-6 antibody treatment considerably worsened kidney function. In conclusion, this study shows that renal I/R in humans is dominated by local IL-6 release. Neutralization of IL-6 in mice resulted in a significant aggravation of renal I/R injury. [source]


Effect of renal and non-renal ischemia/reperfusion on cell-mediated immunity in organs and plasma

APMIS, Issue 2 2010
ANNE C. BRØCHNER
Brøchner AC, Dagnæs-Hansen F, Toft P. Effect of renal and non-renal ischemia/reperfusion on cell-mediated immunity in organs and plasma. APMIS 2010; 118: 101,7. Acute renal failure (ARF) is a common morbidity factor among patients in the intensive care unit, reaching an incidence from 3% to 30% depending on the definition of ARF and the population. Although the majority of the patients with ARF are treated with continuous renal replacement therapy, the mortality rate still remains above 50%. The causes of death are primarily extra-renal and include infection, shock, septicemia, and respiratory failure. We wanted to evaluate the cell-mediated inflammatory response of renal ischemia,reperfusion (I/R) and non-renal I/R, in blood and in distant organs. In our study, 80 mice were divided into four groups. The following surgeries were performed on the groups compared: bilateral renal I/R by clamping, unilateral renal ischemia, anesthesia only, and unilateral hind leg I/R. Half of the animals were killed after 2 h and the other half after 24 h. To assess the inflammatory response, we measured myeloperoxidase (MPO) in the organs, and CD 11b and major histocompatibility complex (MHC) II-positive cells in the blood. Non-renal I/R elicited the most elevated levels of MPO in extra-renal tissue such as the lungs. There was a trend toward higher MPO levels in the kidney following renal I/R. All kinds of I/R induced an upregulation of the adhesion molecule CD 11b and a downregulation of MHC II. Renal and non-renal I/R induced neutrophil infiltration in distant organs. Renal I/R does not induce a larger cell-mediated inflammatory response in blood and organs than non-renal I/R. [source]