Removal Treatments (removal + treatment)

Distribution by Scientific Domains


Selected Abstracts


Environmental control of fine root dynamics in a northern hardwood forest

GLOBAL CHANGE BIOLOGY, Issue 5 2003
GERALDINE L. TIERNEY
Abstract Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (< 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over-winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems. [source]


Species-specific Seedling Responses to Hurricane Disturbance in a Puerto Rican Rain Forest1

BIOTROPICA, Issue 4 2003
Lawrence R. Walker
ABSTRACT Seedling dynamics were followed in a Puerto Rican forest for 20 months following a severe hurricane to study the interactive effects of hurricane debris, nutrients, and light on seedling diversity, density, growth, and mortality. Three treatments (debris removal, an unaltered control with hurricane debris, and chemical fertilization added to hurricane debris) altered levels of forest debris and soil nutrients. Canopy openness was measured twice using hemispherical photographs of the canopy. We examined the demographic responses of six common species to treatments over time. Seedling densities increased for all six species but the only significant treatment effects were increased densities of the pioneer tree Cecropia and the shrub Palicourea in the debris removal treatment. Seedling growth declined with declining light levels for four species but not for the pioneer tree Alchornea or the non-pioneer tree Dacryodes. Only Cecropia and the non-pioneer tree Chionanthus had treatment effects on growth. Mortality also differed among species and tended to be highest in the fertilized plots for all but Cecropia and Dacryodes. We found only some of the expected differences between pioneer and non-pioneer plants, as each species had a unique response to the patchy distributions of organic debris, nutrients, and light following the hurricane. High local species diversity was maintained through the individualistic responses of seedlings after a disturbance. RESUMEN Seguimos la dinámica de plántulas en un bosque en Puerto Rico durante 20 meses después del huracán Hugo para estudiar el efecto de la interacción de hojarasca de huracán, nutrientes, y luz sobre la diversidad de especies, la densidad, el crecimiento, y la mortalidad. Establecimos tres tratamientos (remoción de hojarasca, control con la hojarasca de huracán inalterada, y fertilizante químico añadido a la hojarasca del huracán) para alterar los niveles de hojarasca en el bosque y los nutrientes en el suelo. Medimos luz directa e indirecta dos veces usando fotografias hemisféricas del dosel. La diversidad y la uniformidad en la distribución de especies pero no la riqueza de especies fueron reducidas en presencia de fertilización. Durante el estudio examinamos respuestas demográficas de seis especies communes a los tratamientos. La densidad de plántulas aumentó para todas las seis especies pero el único efecto de tratamiento fue el aumento en la densidad del árbol pionero Cecropia y el arbusto Palicourea en el tratamiento de remoción de hojarasca. El crecimiento de plántulas disminuyó según los niveles de luz disminuyeron para cuatro de las especies pero no para el árbol pionero Alchornea o el árbol nopionero Dacryodes. Sólo el crecimiento de Cecropia y del árbol no-pionero Chionanthus fue affectado por los tratamientos. La mortalidad fue diferente entre las especies y tuvo una tendencia a ser mayor en las parcelas fertilizadas. Sólo encontramos algunas de las diferencias esperadas entre plantas pioneras y no-pioneras. Cada especie respondió de forma única a la distribución en parches de hojarasca, nutrientes, y luz luego del huracán. La aha diversidad local de especies se mantuvo a través de las respuestas individualizadas de las plántulas después de la perturbación. [source]


Laser Hair Removal with Alexandrite versus Diode Laser Using Four Treatment Sessions: 1-Year Results

DERMATOLOGIC SURGERY, Issue 11 2001
Sorin Eremia MD
Background. Laser hair removal is the treatment of choice for hypertrichosis. The two most commonly used hair removal lasers are compared. Objective. To present the results of a comparative study examining the role of wavelength, fluence, spot size, pulse width, and cooling systems on long-term results after a series of four laser hair removal treatments using the 755 nm alexandrite and 800,810 nm diode lasers. Methods. The axillae of 15 untanned, type I,V patients were treated side by side four times at 4- to 6-week intervals with a 755 nm, 3-msec pulse width, cryogen spray-equipped alexandrite laser and an 800 nm, variable pulse width, cooled sapphire window-equipped diode laser. Each patient was pretested and treated with the maximum fluence tolerated at the largest spot size available for each laser (12 mm round/113 mm2 for the alexandrite and 9 mm for the diode). Results. Evaluations were done at 3, 6, 9, and 12 months after the last treatment. Twelve-month results with the alexandrite and diode lasers achieved 85% versus 84% hair reduction. The fact that tan avoidance was strictly followed permitted the use of relatively high fluences (25,30+ J/cm2) even in type IV patients. For most patients, four treatment sessions using high fluences (30,40 J/cm2) with relatively large spot sizes (12 mm round for the 755 nm alexandrite and 9 mm for the 800 nm diode) resulted in 12-month hair reductions in the 90% range. Conclusion. Both the alexandrite and diode lasers in this 12-month study produced excellent long-term hair reductions. [source]


Rare species loss alters ecosystem function , invasion resistance

ECOLOGY LETTERS, Issue 4 2001
Kelly G. Lyons
The imminent decline in species diversity coupled with increasing exotic species introductions has provoked investigation into the role of resident diversity in community resistance to exotic species colonization. Here we present the results of a field study using an experimental method in which diversity was altered by removal of less abundant species and the resulting disturbance was controlled for by removal of an equivalent amount of biomass of the most common species from paired plots. Following these manipulations, the exotic grass, Lolium temulentum, was introduced. We found that exotic species establishment was higher in plots in which diversity was successfully reduced by removal treatments and was inversely related to imposed species richness. These results demonstrate that less common species can significantly influence invasion events and highlight the potential role of less common species in the maintenance of ecosystem function. [source]


Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment

FUNCTIONAL ECOLOGY, Issue 2 2009
Susan E. Ward
Summary 1Northern hemisphere peatlands are globally important stores of organic soil carbon. We examined effects of plant functional group identity on short-term carbon (C) flux in an ombrotrophic peatland in northern England, UK, by selectively removing one of each of the three dominant plant functional groups (ericoid dwarf-shrubs, graminoids and bryophytes). Carbon dynamics were quantified by a combination of CO2 flux measurements and 13CO2 stable isotope pulse labelling approaches. 2Significant effects of plant functional group removals on CO2 fluxes and tracer 13C uptake and turnover were detected. Removal of ericoid dwarf-shrubs had the greatest influence on gross CO2 flux, increasing rates of respiration and photosynthesis by > 200% relative to the undisturbed control. After pulse labelling with 13CO2, we found that turnover of recent photosynthate, measured as respired 13CO2, was also greatest in the absence of dwarf-shrubs. 3Analysis of 13C tracer enrichment in leaf tissues from all plant removal treatments showed that the rate of fixation of 13CO2 and turnover of 13C labelled photosynthate in leaf tissue was greatest in graminoids and lowest in bryophytes. Furthermore, graminoid leaf 13C enrichment was greatest when growing in the absence of dwarf-shrubs, suggesting that the presence of dwarf-shrubs reduced the photosynthetic activity of graminoids. 4We conclude that plant functional groups differentially influence the uptake and short-term flux of carbon in peatlands, suggesting that changes in the functional composition of vegetation resulting from global change have the potential to alter short-term patterns of carbon exchange in peatland. [source]


Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra

JOURNAL OF ECOLOGY, Issue 4 2008
M. Syndonia Bret-Harte
Summary 1Plant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning. 2After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL. 3Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass. 4Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability. 5In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed. 6Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition. [source]


Temporary hair removal by low fluence photoepilation: Histological study on biopsies and cultured human hair follicles

LASERS IN SURGERY AND MEDICINE, Issue 8 2008
Guido F. Roosen MSc
Abstract Background and Objectives We have recently shown that repeated low fluence photoepilation (LFP) with intense pulsed light (IPL) leads to effective hair removal, which is fully reversible. Contrary to permanent hair removal treatments, LFP does not induce severe damage to the hair follicle. The purpose of the current study is to investigate the impact of LFP on the structure and the physiology of the hair follicle. Study Design/Materials and Methods Single pulses of IPL with a fluence of 9 J/cm2 and duration of 15 milliseconds were applied to one lower leg of 12 female subjects, followed by taking a single biopsy per person, either immediately, or after 3 or 7 days. Additionally, we present a novel approach to examine the effects of LFP, in which ex vivo hairy human scalp skin was exposed to IPL pulses with the same parameters as above, followed by isolation and culturing of the hair follicles over several days. Samples were examined histologically and morphologically. Results The majority of the cultured follicles that had been exposed to LFP treatment showed a marked treatment effect. The melanin containing part of the hair follicle bulb was the target and a catagen-like transformation was observed demonstrating that hair formation had ceased. The other follicles that had been exposed to LFP showed a less strong or no response. The skin biopsies also revealed that the melanin-rich region of the hair follicle bulb matrix was targeted; other parts of the follicle and the skin remained unaffected. Catagen/telogen hair follicles were visible with unusual melanin clumping, indicating this cycle phase was induced by the IPL treatment. Conclusions Low fluence photoepilation targets the pigmented matrix area of the anagen hair follicle bulb, causing a highly localized but mild trauma that interrupts the hair cycle, induces a catagen-like state and eventually leads to temporary loss of the hair. Lesers Surg. Med. 40:520,528, 2008. © 2008 Wiley-Liss, Inc. [source]


Experimentally testing the role of foundation species in forests: the Harvard Forest Hemlock Removal Experiment

METHODS IN ECOLOGY AND EVOLUTION, Issue 2 2010
Aaron M. Ellison
Summary 1.,Problem statement, Foundation species define and structure ecological systems. In forests around the world, foundation tree species are declining due to overexploitation, pests and pathogens. Eastern hemlock (Tsuga canadensis), a foundation tree species in eastern North America, is threatened by an exotic insect, the hemlock woolly adelgid (Adelges tsugae). The loss of hemlock is hypothesized to result in dramatic changes in assemblages of associated species with cascading impacts on food webs and fluxes of energy and nutrients. We describe the setting, design and analytical framework of the Harvard Forest Hemlock Removal Experiment (HF-HeRE), a multi-hectare, long-term experiment that overcomes many of the major logistical and analytical challenges of studying system-wide consequences of foundation species loss. 2.,Study design, HF-HeRE is a replicated and blocked Before-After-Control-Impact experiment that includes two hemlock removal treatments: girdling all hemlocks to simulate death by adelgid and logging all hemlocks >20 cm diameter and other merchantable trees to simulate pre-emptive salvage operations. These treatments are paired with two control treatments: hemlock controls that are beginning to be infested in 2010 by the adelgid and hardwood controls that represent future conditions of most hemlock stands in eastern North America. 3.,Ongoing measurements and monitoring, Ongoing long-term measurements to quantify the magnitude and direction of forest ecosystem change as hemlock declines include: air and soil temperature, light availability, leaf area and canopy closure; changes in species composition and abundance of the soil seed-bank, understorey vegetation, and soil-dwelling invertebrates; dynamics of coarse woody debris; soil nitrogen availability and net nitrogen mineralization; and soil carbon flux. Short-term or one-time-only measurements include initial tree ages, hemlock-decomposing fungi, wood-boring beetles and throughfall chemistry. Additional within-plot, replicated experiments include effects of ants and litter-dwelling microarthoropods on ecosystem functioning, and responses of salamanders to canopy change. 4.,Future directions and collaborations, HF-HeRE is part of an evolving network of retrospective studies, natural experiments, large manipulations and modelling efforts focused on identifying and understanding the role of single foundation species on ecological processes and dynamics. We invite colleagues from around the world who are interested in exploring complementary questions to take advantage of the HF-HeRE research infrastructure. [source]


Diversity loss, recruitment limitation, and ecosystem functioning: lessons learned from a removal experiment

OIKOS, Issue 3 2001
Amy J. Symstad
A five-year removal experiment in which plant functional group diversity was manipulated found strong limitation of ecosystem functioning caused by the differing abilities of remaining functional groups to recruit into space left unoccupied by the plants removed. We manipulated functional group diversity and composition by removing all possible combinations of zero, one, or two plant functional groups (forbs, C3 graminoids, and C4 graminoids), as well as randomly chosen biomass at levels corresponding to the functional group removals, from a prairie grassland community. Although random biomass removal treatments showed no significant effect of removing biomass in general on ecosystem functions measured (P>0.05), the loss of particular functional groups led to significant differences in above- (P<0.001) and belowground (P<0.001) biomass, rooting-zone (P=0.001) and leached (P=0.01) nitrogen, nitrogen mineralization (P<0.001), and community drought resistance (P=0.002). Many of these differences stemmed from the marked difference in the ways remaining functional groups responded to the experimental removals. Strong recruitment limitation of C4 graminoids resulted in large areas of open ground, high nutrient leaching, and high community drought resistance in plots containing just this functional group. In contrast, rhizomatous C3 graminoids quickly colonized space and used soil resources made available by the removal of other groups, leading to lower soil nitrate in plots containing C3 graminoids. These effects of recruitment limitation on ecosystem functioning illustrate possible effects of diversity loss not captured by synthetic experiments in which diversity gradients are created by adding high densities of seeds to bare soil. [source]


Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

APPLIED VEGETATION SCIENCE, Issue 2 2010
Jeffrey M. Kane
Abstract Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a second-growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04-ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non-native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non-native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non-native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long-term. [source]