Remeshing Procedure (remeshing + procedure)

Distribution by Scientific Domains


Selected Abstracts


Lower bound limit analysis with adaptive remeshing

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2005
Andrei V. Lyamin
Abstract The objective of this work is to present an adaptive remeshing procedure for lower bound limit analysis with application to soil mechanics. Unlike conventional finite element meshes, a lower bound grid incorporates statically admissible stress discontinuities between adjacent elements. These discontinuities permit large stress jumps over an infinitesimal distance and reduce the number of elements needed to predict the collapse load accurately. In general, the role of the discontinuities is crucial as their arrangement and distribution has a dramatic influence on the accuracy of the lower bound solution (Limit Analysis and Soil Plasticity, 1975). To ensure that the discontinuities are positioned in an optimal manner requires an error estimator and mesh adaptation strategy which accounts for the presence of stress singularities in the computed stress field. Recently, Borges et al. (Int. J. Solids Struct. 2001; 38:1707,1720) presented an anisotropic mesh adaptation strategy for a mixed limit analysis formulation which used a directional error estimator. In the present work, this strategy has been tailored to suit a discontinuous lower bound formulation which employs the stresses and body forces as primary unknowns. The adapted mesh has a maximum density of discontinuities in the direction of the maximum rate of change in the stress field. For problems involving strong stress singularities in the boundary conditions (e.g. a strip footing), the automatic generation of discontinuity fans, centred on the singular points, has been implemented. The efficiency of the proposed technique is demonstrated by analysis of two classical soil mechanics problems; namely the bearing capacity of a rigid strip footing and the collapse of a vertical cut. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Development of the DYNA3D simulation code with automated fracture procedure for brick elements

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2003
Ala Tabiei
Abstract Numerical simulation of cracked structures is an important aspect in structural safety assessment. In recent years, there has been an increasing rate of development of numerical codes for modelling fracture procedure. The subject of this investigation is implementing automated fracture models in the DYNA3D non-linear explicit finite element code to simulate pseudo 3D crack growth procedure. The implemented models have the capabilities of simulating automatic crack propagation without user intervention. The implementation is carried on solid elements. The methodology of implementing fracture models is described. An element deletion-and-replacement remeshing procedure is proposed for updating the explicit geometric description of evolving cracks. Fracture parameters such as stress intensity factors, energy release rates and crack tip opening angle are evaluated. The maximum circumferential stress criterion is used to predict the direction of crack advancement. Seven crack problems are presented to verify the effectiveness of the methodology. Mesh sensitivity and loading rate effects are studied in the validation of the presented procedure. Copyright © 2003 John Wiley & Sons, Ltd. [source]


A Lagrangian level-set approach for the simulation of incompressible two-fluid flows,

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10-11 2005
F. S. Sousa
Abstract A Lagrangian level-set method to solve incompressible two-dimensional two-fluid flows is presented. The Navier,Stokes equations are discretized by a Galerkin finite element method. A projection method is employed to decouple the system of non-linear equations. The interface between fluids is represented by the zero level set of a function , plus additional marker points of the computational mesh. In the standard Eulerian level-set method, this function is advected through the domain by solving a pure advection equation. To reduce mass conservation errors that can arise from this step, our method employs a Lagrangian technique which moves the nodes of the finite element mesh, and consequently, the information stored in each node. The quality of the mesh is controlled by a remeshing procedure, avoiding bad triangles by flipping edges, inserting or removing vertices from the triangulation. Results of numerical simulations are presented, illustrating the improvements in mass conservation and accuracy of this new methodology. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Adaptive finite element procedures for elastoplastic problems at finite strains

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003
A. Koch Dipl.-Ing.
A major difficulty in the context of adaptive analysis of geometrically nonlinear problems is to provide a robust remeshing procedure that accounts both for the error caused by the spatial discretization and for the error due to the time discretization. For stability problems, such as strain localization and necking, it is essential to provide a step,size control in order to get a robust algorithm for the solution of the boundary value problem. For this purpose we developed an easy to implement step,size control algorithm. In addition we will consider possible a posteriori error indicators for the spatial error distribution of elastoplastic problems at finite strains. This indicator is adopted for a density,function,based adaptive remeshing procedure. Both error indicators are combined for the adaptive analysis in time and space. The performance of the proposed method is documented by means of representative numerical examples. [source]


A stabilized pseudo-shell approach for surface parametrization in CFD design problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2002
O. Soto
Abstract A surface representation for computational fluid dynamics (CFD) shape design problems is presented. The surface representation is based on the solution of a simplified pseudo-shell problem on the surface to be optimized. A stabilized finite element formulation is used to perform this step. The methodology has the advantage of being completely independent of the CAD representation. Moreover, the user does not have to predefine any set of shape functions to parameterize the surface. The scheme uses a reasonable discretization of the surface to automatically build the shape deformation modes, by using the pseudo-shell approach and the design parameter positions. Almost every point of the surface grid can be chosen as design parameter, which leads to a very rich design space. Most of the design variables are chosen in an automatic way, which makes the scheme easy to use. Furthermore, the surface grid is not distorted through the design cycles which avoids remeshing procedures. An example is presented to demonstrate the proposed methodology. Copyright © 2002 John Wiley & Sons, Ltd. [source]