Reliable Interpretation (reliable + interpretation)

Distribution by Scientific Domains


Selected Abstracts


Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity

HUMAN BRAIN MAPPING, Issue 2 2010
Petra J. van Houdt
Abstract EEG correlated functional MRI (EEG-fMRI) allows the delineation of the areas corresponding to spontaneous brain activity, such as epileptiform spikes or alpha rhythm. A major problem of fMRI analysis in general is that spurious correlations may occur because fMRI signals are not only correlated with the phenomena of interest, but also with physiological processes, like cardiac and respiratory functions. The aim of this study was to reduce the number of falsely detected activated areas by taking the variation in physiological functioning into account in the general linear model (GLM). We used the photoplethysmogram (PPG), since this signal is based on a linear combination of oxy- and deoxyhemoglobin in the arterial blood, which is also the basis of fMRI. We derived a regressor from the variation in pulse height (VIPH) of PPG and added this regressor to the GLM. When this regressor was used as predictor it appeared that VIPH explained a large part of the variance of fMRI signals acquired from five epilepsy patients and thirteen healthy volunteers. As a confounder VIPH reduced the number of activated voxels by 30% for the healthy volunteers, when studying the generators of the alpha rhythm. Although for the patients the number of activated voxels either decreased or increased, the identification of the epileptogenic zone was substantially enhanced in one out of five patients, whereas for the other patients the effects were smaller. In conclusion, applying VIPH as a confounder diminishes physiological noise and allows a more reliable interpretation of fMRI results. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


Haemoglobin Etobicoke, an incidental finding in an Irish diabetic

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 4 2003
D. A. O'Brien
Summary It is well recognized that haemoglobin variants can be detected during the measurement of HbA1c by high-performance liquid chromatography (HPLC). A number of variants have been reported as compromising the quantification of HbA1c, a marker used in the assessment of glycaemic control in diabetes. We describe a case of haemoglobin Etobicoke, a rare alpha chain variant detected in an Irish diabetic during HbA1c analysis. Its identity was confirmed using a series of investigations. These included haemoglobin electrophoresis at alkaline and acid pH, isoelectric focusing and globin chain electrophoresis. Ultimately mass spectrometry isolated the mutation at position alpha 84 (F5). Haemoglobin Etobicoke, first described in Canada in 1969 has not previously been detected on HbA1c analysis. In the presence of this rare variant, HbA1c, a standard method using HPLC to assess glycaemic control in diabetes is unreliable and alternatives such as fructosamine need to be considered. HbA1c measured by automated HPLC will effectively screen populations where haemoglobin variants were not previously known. Precise identity of these variants when they are detected is crucial to the reliable interpretation of HbA1c analyses. [source]


Mixture Interpretation: Defining the Relevant Features for Guidelines for the Assessment of Mixed DNA Profiles in Forensic Casework,

JOURNAL OF FORENSIC SCIENCES, Issue 4 2009
Bruce Budowle Ph.D.
Abstract:, Currently in the United States there is little direction for what constitutes sufficient guidelines for DNA mixture interpretation. While a standardized approach is not possible or desirable, more definition is necessary to ensure reliable interpretation of results is carried out. In addition, qualified DNA examiners should be able to review reports and understand the assumptions made by the analyst who performed the interpretation. Interpretation of DNA mixture profiles requires consideration of a number of aspects of a mixed profile, many of which need to be established by on-site, internal validation studies conducted by a laboratory's technical staff, prior to performing casework analysis. The relevant features include: criteria for identification of mixed specimens, establishing detection and interpretation threshold values, defining allele peaks, defining nonallele peaks, identifying artifacts, consideration of tri-allelic patterns, estimating the minimum number of contributors, resolving components of a mixture, determining when a portion of the mixed profile can be treated as a single source profile, consideration of potential additive effects of allele sharing, impact of stutter peaks on interpretation in the presence of a minor contributor, comparison with reference specimens, and some issues related to the application of mixture calculation statistics. Equally important is using sensible judgment based on sound and documented principles of DNA analyses. Assumptions should be documented so that reliable descriptive information is conveyed adequately concerning that mixture and what were the bases for the interpretations that were carried out. Examples are provided to guide the community. Interpretation guidelines also should incorporate strategies to minimize potential bias that could occur by making inferences based on a reference sample. The intent of this paper is to promote more thought, provide assistance on many aspects for consideration, and to support that more formalized mixture interpretation guidelines are developed. [source]


Excess silica in omphacite and the formation of free silica in eclogite

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2007
H. W. DAY
Abstract Silica lamellae in eclogitic clinopyroxene are widely interpreted as evidence of exsolution during decompression of eclogite. However, mechanisms other than exsolution might produce free silica, and the possible mechanisms depend in part on the nature and definition of excess silica. ,Excess' silica may occur in both stoichiometric and non-stoichiometric pyroxene. Although the issue has been debated, we show that all common definitions of excess silica in non-stoichiometric clinopyroxene are internally consistent, interchangeable, and therefore equivalent. The excess silica content of pyroxene is easily illustrated in a three-component, condensed composition space and may be plotted directly from a structural formula unit or recalculated end-members. In order to evaluate possible mechanisms for the formation of free silica in eclogite, we examined the net-transfer reactions in model eclogites using a Thompson reaction space. We show that there are at least three broad classes of reactions that release free silica in eclogite: (i) vacancy consumption in non-stoichiometric pyroxene; (ii) dissolution of Ti-phases in pyroxene or garnet; (iii) reactions between accessory phases and either pyroxene or garnet. We suggest that reliable interpretation of the significance of silica lamellae in natural clinopyroxene will require the evaluation not only of silica solubility, but also of titanium solubility, and the possible roles of accessory phases and inclusions on the balance of free silica. [source]


Gene expression in skeletal tissues: application of laser capture microdissection

JOURNAL OF MICROSCOPY, Issue 1 2005
D. Benoyahu
Summary Tissue differentiation is based on the expression of transcription factors, receptors for cytokines, and nuclear receptors that regulate a specific phenotype. The purpose of this study was to select cells from various skeletal tissues in order to analyse differential gene expression of cells in the native environment in vivo. It is a difficult task to obtain cells from skeletal tissues, such as cartilage, periost, bone and muscle, that are structured together and do not exist as individual organs. We used laser capture microdissection which permits the selection and isolation of individual cells from tissue sections. The RNA isolated from these tissues was used for reverse transcriptase-polymerase chain reactions for molecular analysis. We analysed the expression of transcription factors (cFOS, cbfa1, MyoD), receptors for cytokines, nuclear receptors, alkaline phosphatase and the structural proteins osteocalcin and collagen II. The results obtained demonstrate differential patterns of gene expression according to the tissue arrangement in their native in vivo environment, with reliable interpretation of the functions of the analysed genes in the context of intact skeletal tissue physiology. [source]


A dynamical model for characterising seasonality effects on eelgrass plastochron intervals

ANNALS OF APPLIED BIOLOGY, Issue 1 2010
E. Solana-Arellano
The plastochron interval is widely used to calculate age and rates of productivity in many plants, including seagrasses. However, plant responses to changing environmental conditions, including seasonal patterns, can introduce substantial errors in methods for calculating age and rates of growth. We propose a generalised method for characterising seasonal variability in eelgrass plastochron values based on a model that consists of a linear combination of a trend, a seasonality component and a stochastic noise component. The model was validated using data obtained biweekly during 1998,2003 in a Zostera marina meadow in a coastal lagoon in northwestern Baja California. Plastochron intervals exhibited marked interannual and seasonal variability as well as in the timing of plastochron interval (PI) minima and maxima. Correlation analyses indicated that sea surface temperature is a fundamental forcing factor for the plastochron interval, whose local variability is influenced by the onset of ,El Niño' and ,La Niña' events. The proposed model provided reliable interpretations that elicited the existence of seasonal processes which are usually masked by multimodal changes in the plastochron interval. Using successive averages of seasonal PI to describe annual cycles resulted in reliable leaf-growth assessments as well as in better determinations of shoot age than those calculated using a single annual mean. [source]