Home About us Contact | |||
Auditory Neurons (auditory + neuron)
Selected AbstractsLaser stimulation of single auditory nerve fibers,,§¶,THE LARYNGOSCOPE, Issue 10 2010Philip D. Littlefield MD Abstract Objectives/Hypothesis: One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design: In vivo study using normal-hearing adult gerbils. Methods: Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 ,m and 1.873 ,m, with pulse durations of 35 ,s to 1,000 ,s, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-,m-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results: Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions: Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Laryngoscope, 2010 [source] Localization of KCNC1 (Kv3.1) potassium channel subunits in the avian auditory nucleus magnocellularis and nucleus laminaris during developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2003Suchitra Parameshwaran-Iyer Abstract The KCNC1 (previously Kv3.1) potassium channel, a delayed rectifier with a high threshold of activation, is highly expressed in the time coding nuclei of the adult chicken and barn owl auditory brainstem. The proposed role of KCNC1 currents in auditory neurons is to reduce the width of the action potential and enable neurons to transmit high frequency temporal information with little jitter. Because developmental changes in potassium currents are critical for the maturation of the shape of the action potential, we used immunohistochemical methods to examine the developmental expression of KCNC1 subunits in the avian auditory brainstem. The KCNC1 gene gives rise to two splice variants, a longer KCNC1b and a shorter KCNC1a that differ at the carboxy termini. Two antibodies were used: an antibody to the N-terminus that does not distinguish between KCNC1a and b isoforms, denoted as panKCNC1, and another antibody that specifically recognizes the C terminus of KCNC1b. A comparison of the staining patterns observed with the panKCNC1 and the KCNC1b specific antibodies suggests that KCNC1a and KCNC1b splice variants are differentially regulated during development. Although panKCNC1 immunoreactivity is observed from the earliest time examined in the chicken (E10), a subcellular redistribution of the immunoproduct was apparent over the course of development. KCNC1b specific staining has a late onset with immunostaining first appearing in the regions that map high frequencies in nucleus magnocellularis (NM) and nucleus laminaris (NL). The expression of KCNC1b protein begins around E14 in the chicken and after E21 in the barn owl, relatively late during ontogeny and at the time that synaptic connections mature morphologically and functionally. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 165,178, 2003 [source] Development of the specialized AMPA receptors of auditory neuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2002Steven G. Sugden Abstract At maturity, the AMPA receptors of auditory neurons exhibit very rapid desensitization kinetics and high permeability to calcium, reflecting the predominance of GluR3 flop and GluR4 flop subunits and the paucity of GluR2. We used mRNA analysis and immunoblotting to contrast the development of AMPA receptor structure in the chick cochlear nucleus [nucleus magnocellularis (NM)] with that of the slowly desensitizing and calcium-impermeable AMPA receptors of brainstem motor neurons in the nucleus of the glossopharyngeal/vagal nerves. The relative abundance of transcripts for GluRs 1,4 changes substantially in auditory (but not motor) neurons after embryonic day (E)10, with large decreases in GluR2 and increases in GluR3 and GluR4. Relative to the motor neurons, NM neurons show a higher abundance of flop isoforms of GluRs 2,4 at E10, suggesting that auditory neurons are already biased toward expression of flop isoforms before the onset of synaptic function at E11. Immunoreactivities in NM show very distinct developmental patterns from E13 onward: GluR2 declines by >90%, GluR3 increases threefold, and GluR4 remains relatively constant. Our results show that there are a series of critical points during normal development, most occurring after the onset of function, when rapid changes in receptor structure (occurring via both transcriptional and post-transcriptional control mechanisms) produce the specialized AMPA receptor functions that enable auditory neurons to accurately encode acoustic information. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 189,202, 2002 [source] Development of glutamate receptors in auditory neurons from long-term organotypic cultures of the embryonic chick hindbrainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2009Carmen Diaz Abstract We used long-range organotypic cultures of auditory nuclei in the chick hindbrain to test the development of glutamate receptor activity in auditory neurons growing in a tissue environment that includes early deprivation of peripheral glutamatergic input, subsequent to removal of the otocyst. Cultures started at embryonic day (E)5, and lasted from 6 h to 15 days. Neuronal migration, clustering and axonal extension from the nucleus magnocellularis (NM) to the nucleus laminaris (NL) partially resembled events in vivo. However, the distinctive laminar organization of the NL was not observed. Glutamate receptor (GluR) activity was tested with optical recordings of intracellular Ca2+ in the NM. ,-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)/kainate receptors had Ca2+ responses with a time course similar to that in control slices. Peak amplitude, however, was significantly lower. N -methyl- d -aspartate (NMDA)-mediated Ca2+ responses were higher in 2-day cultures (E5 + 2d) than in E7 explant controls, returning later to control values. Metabotropic GluRs did not elicit Ca2+ responses at standard agonist doses. Blocking NMDA or AMPA/kainate receptors with specific antagonists for 10 days in culture did not limit neuronal survival. Blocking metabotropic GluRs resulted in complete neuronal loss. Thus, ionotropic GluRs are not required for NM neuronal survival. However, their activity during development is affected when neurons grow in an in vitro environment that includes prevention of arrival of peripheral glutamatergic input. [source] Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational modelEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006Roland Schaette Tinnitus, the perception of a sound in the absence of acoustic stimulation, is often associated with hearing loss. Animal studies indicate that hearing loss through cochlear damage can lead to behavioral signs of tinnitus that are correlated with pathologically increased spontaneous firing rates, or hyperactivity, of neurons in the auditory pathway. Mechanisms that lead to the development of this hyperactivity, however, have remained unclear. We address this question by using a computational model of auditory nerve fibers and downstream auditory neurons. The key idea is that mean firing rates of these neurons are stabilized through a homeostatic plasticity mechanism. This homeostatic compensation can give rise to hyperactivity in the model neurons if the healthy ratio between mean and spontaneous firing rate of the auditory nerve is decreased, for example through a loss of outer hair cells or damage to hair cell stereocilia. Homeostasis can also amplify non-auditory inputs, which then contribute to hyperactivity. Our computational model predicts how appropriate additional acoustic stimulation can reverse the development of such hyperactivity, which could provide a new basis for treatment strategies. [source] Cysteine-string protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearingEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002Michel Eybalin Abstract Cysteine-string protein is a vesicle-associated protein that plays a vital function in neurotransmitter release. We have studied its expression and regulation during cochlear maturation. Both the mRNA and the protein were found in primary auditory neurons and the sensory inner hair cells. More importantly, cysteine-string protein was localized on synaptic vesicles associated with the synaptic ribbon in inner hair cells and with presynaptic differentiations in lateral and medial olivocochlear terminals , the cell bodies of which lie in the auditory brainstem. No cysteine-string protein was expressed by the sensory outer hair cells suggesting that the distinct functions of the two cochlear hair cell types imply different mechanisms of neurotransmitter release. In developmental studies in the rat, we observed that cysteine-string protein was present beneath the inner hair cells at birth and beneath outer hair cells by postnatal day 2 only. We found no expression in the inner hair cells before about postnatal day 12, which corresponds to the period during which the first cochlear action potentials could be recorded. In conclusion, the close association of cysteine-string protein with synaptic vesicles tethered to synaptic ribbons in inner hair cells and its synchronized expression with the appearance and maturation of the cochlear potentials strongly suggest that this protein plays a fundamental role in sound-evoked glutamate release by inner hair cells. This also suggests that this role may be common to ribbon synapses and conventional central nervous system synapses. [source] Comparative gene expression analysis reveals a characteristic molecular profile of the superior olivary complexTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2006Hans Gerd Nothwang Abstract The superior olivary complex (SOC) is a very conspicuous structure in the mammalian auditory brainstem. It represents the first binaural processing center and is important for sound localization in the azimuth and in feedback regulation of cochlear function. In order to define molecular determinants of the SOC, which are of potential functional relevance, we have performed a comprehensive analysis of its transcriptome by serial analysis of gene expression in adult rats. Here, we performed a detailed analysis of the SOC's gene expression profile compared to that of two other neural tissues, the striatum and the hippocampus, and with extraocular muscle tissue. This tested the hypothesis that SOC-specific or significantly upregulated transcripts provide candidates for the specific function of auditory neurons. Thirty-three genes were significantly upregulated in the SOC when compared to the two other neural tissues. Thirteen encoded proteins involved in neurotransmission, including action potential propagation, exocytosis, and myelination; five genes are important for the energy metabolism, and five transcripts are unknown or poorly characterized and have yet to be described in the nervous system. The comparison of functional gene classes indicates that the SOC has the highest energy demand of the three neural tissues, yet protein turnover is apparently not increased. This suggests a high energy demand for fueling auditory neurotransmission. Such a demand may have implications on auditory-specific tasks and relate to central auditory processing disorders. Ultimately, these data provide new avenues to foster investigations of auditory function and to advance molecular physiology in the central auditory system. Anat Rec Part A, 2006. © 2006 Wiley-Liss, Inc. [source] A team of potassium channels tunes up auditory neuronsTHE JOURNAL OF PHYSIOLOGY, Issue 11 2009Donata Oertel No abstract is available for this article. [source] Laser stimulation of single auditory nerve fibers,,§¶,THE LARYNGOSCOPE, Issue 10 2010Philip D. Littlefield MD Abstract Objectives/Hypothesis: One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design: In vivo study using normal-hearing adult gerbils. Methods: Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 ,m and 1.873 ,m, with pulse durations of 35 ,s to 1,000 ,s, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-,m-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results: Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions: Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Laryngoscope, 2010 [source] |