Relatedness Values (relatedness + value)

Distribution by Scientific Domains


Selected Abstracts


PLASTICITY IN QUEEN NUMBER AND SOCIAL STRUCTURE IN THE INVASIVE ARGENTINE ANT (LINEPITHEMA HUMILE)

EVOLUTION, Issue 10 2002
Krista K. Ingram
Abstract., In many polygynous social insect societies, ecological factors such as habitat saturation promote high queen numbers by increasing the cost of solitary breeding. If polygyny is associated with constrained environments, queen number in colonies of invasive social insects should increase as saturation of their new habitat increases. Here I describe the variation in queen number, nestmate relatedness, and nest size along a gradient of time since colonization in an invading population of Argentine ants (Linepithema humile) in Haleakala, Hawaii. Nest densities in this population increase with distance from the leading edge of the invasion, reaching a stable density plateau approximately 80 m from the edge (> 2 years after colonization). Although the number of queens per nest in Haleakala is generally lower than previously reported for Argentine ants, there is significant variation in queen number across this population. Both the observed and effective queen numbers increase across the density gradient, and nests in the center of the population contain queen numbers three to nine times higher than those on the edge of the invasion. The number of workers per nest is correlated with queen number, and nests in the center are six times larger than nests at the edge. Microsatellite analysis of relatedness among nestmates reveals that all nests in the Haleakala population are characterized by low relatedness and have evidence of multiple reproducing queens. Relatedness values are significantly lower in nests in the center of the population, indicating that the number of reproducing queens is greater in areas of high nest density. The variation in queen number and nestmate relatedness in this study is consistent with expectations based on changes in ecological constraints during the invasion of a new habitat, suggesting that the social structure of Argentine ant populations is strongly influenced by ecological factors. Flexibility in social structure may facilitate persistence in variable environments and may also confer significant advantages to a species when introduced into new areas. [source]


Neither genetic nor observational data alone are sufficient for understanding sex-biased dispersal in a social-group-living species

MOLECULAR ECOLOGY, Issue 8 2009
T. R. HARRIS
Abstract Complex sex-biased dispersal patterns often characterize social-group-living species and may ultimately drive patterns of cooperation and competition within and among groups. This study investigates whether observational data or genetic data alone can elucidate the potentially complex dispersal patterns of social-group-living black and white colobus monkeys (Colobus guereza, ,guerezas'), or whether combining both data types provides novel insights. We employed long-term observation of eight neighbouring guereza groups in Kibale National Park, Uganda, as well as microsatellite genotyping of these and two other neighbouring groups. We created a statistical model to examine the observational data and used dyadic relatedness values within and among groups to analyse the genetic data. Analyses of observational and genetic data both supported the conclusion that males typically disperse from their natal groups and often transfer into nearby groups and probably beyond. Both data types also supported the conclusion that females are more philopatric than males but provided somewhat conflicting evidence about the extent of female philopatry. Observational data suggested that female dispersal is rare or nonexistent and transfers into neighbouring groups do not occur, but genetic data revealed numerous pairs of closely related adult females among neighbouring groups. Only by combining both data types were we able to understand the complexity of sex-biased dispersal patterns in guerezas and the processes that could explain our seemingly conflicting results. We suggest that the data are compatible with a scenario of group dissolution prior to the start of this study, followed by female transfers into different neighbouring groups. [source]


Investigation of the population genetic structure and mating system in the ant Pheidole pallidula

MOLECULAR ECOLOGY, Issue 9 2002
Denis Fournier
Abstract The origin of eusociality in haplo-diploid organisms such as Hymenoptera has been mostly explained by kin selection. However, several studies have uncovered decreased relatedness values within colonies, resulting primarily from multiple queen matings (polyandry) and/or from the presence of more than one functional queen (polygyny). Here, we report on the use of microsatellite data for the investigation of sociogenetic parameters, such as relatedness, and levels of polygyny and polyandry, in the ant Pheidole pallidula. We demonstrate, through analysis of mother,offspring combinations and the use of direct sperm typing, that each queen is inseminated by a single male. The inbreeding coefficient within colonies and the levels of relatedness between the queens and their mate are not significantly different from zero, indicating that matings occur between unrelated individuals. Analyses of worker genotypes demonstrate that 38% of the colonies are polygynous with 2,4 functional queens, and suggest the existence of reproductive skew, i.e. unequal respective contribution of queens to reproduction. Finally, our analyses indicate that colonies are genetically differentiated and form a population exhibiting significant isolation-by-distance, suggesting that some colonies originate through budding. [source]


TECHNICAL ADVANCES: A maximum-likelihood relatedness estimator allowing for negative relatedness values

MOLECULAR ECOLOGY RESOURCES, Issue 2 2008
DMITRY A. KONOVALOV
Abstract Previously reported maximum-likelihood pairwise relatedness (r) estimator of Thompson and Milligan (M) was extended to allow for negative r estimates under the regression interpretation of r. This was achieved by establishing the equivalency of the likelihoods used in the kinship program and the likelihoods of Thompson. The new maximum-likelihood (ML) estimator was evaluated by Monte Carlo simulations. It was found that the new ML estimator became unbiased significantly faster compared to the original M estimator when the amount of genotype information was increased. The effects of allele frequency estimation errors on the new and existing relatedness estimators were also considered. [source]