Related Species (relate + species)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Related Species

  • other relate species

  • Selected Abstracts

    Xanthomonas citri: breaking the surface

    Asha M. Brunings
    SUMMARY Taxonomy: Bacteria; Proteobacteria, Gammaproteobacteria; Xanthomonadales; Xanthomonadaceae, Xanthomonas. Microbiological properties: Gram-negative, obligately aerobic, straight rods, motile by a single polar flagellum, yellow pigment. Related species:X. campestris , X. axonopodis , X. oryzae , X. albilineans . Host range: Affects Rutaceous plants, primarily Citrus spp., Fortunella spp., and Poncirus spp., world-wide. Quarantined pathogen in many countries. Economically important hosts are cultivated orange, grapefruit, lime, lemon, pomelo and citrus rootstock. Disease symptoms: On leaves, first appearance is as oily looking, 2,10 mm, similarly sized, circular spots, usually on the abaxial surface. On leaves, stems, thorns and fruit, circular lesions become raised and blister-like, growing into white or yellow spongy pustules. These pustules then darken and thicken into a light tan to brown corky canker, which is rough to the touch. On stems, pustules may coalesce to split the epidermis along the stem length, and occasionally girdling of young stems may occur. Older lesions on leaves and fruit tend to have more elevated margins and are at times surrounded by a yellow chlorotic halo (that may disappear) and a sunken centre. Sunken craters are especially noticeable on fruit, but the lesions do not penetrate far into the rind. Defoliation and premature abscission of affected fruit occurs on heavily infected trees. Useful websites: ; [source]

    Evidence for species differences in the pattern of androgen receptor distribution in relation to species differences in an androgen-dependent behavior

    Brian K. Shaw
    Abstract Chickens (Gallus gallus domesticus) and Japanese quail (Coturnix japonica), two closely related gallinaceous bird species, exhibit a form of vocalization,crowing,which differs between the species in two components: its temporal acoustic pattern and its accompanying postural motor pattern. Previous work utilizing the quail-chick chimera technique demonstrated that the species-specific characteristics of the two crow components are determined by distinct brain structures: the midbrain confers the acoustic pattern, and the caudal hindbrain confers the postural pattern. Crowing is induced by androgens, acting directly on androgen receptors. As a strategy for identifying candidate neurons in the midbrain and caudal hindbrain that could be involved in crow production, we performed immunocytochemistry for androgen receptors in these brain regions in both species. We also investigated midbrain-to-hindbrain vocal-motor projections. In the midbrain, both species showed prominent androgen receptor immunoreactivity in the nucleus intercollicularis, as had been reported in previous studies. In the caudal hindbrain, we discovered characteristic species differences in the pattern of androgen receptor distribution. Chickens, but not quail, showed strong immunoreactivity in the tracheosyringeal division of the hypoglossal nucleus, whereas quail, but not chickens, possessed strong immunoreactivity in a region of the ventrolateral medulla. Some of these differences in hindbrain androgen receptor distribution may be related to the species differences in the postural component of crowing behavior. The results of the present study imply that the spatial distribution of receptor proteins can vary even between closely related species. Such variation in receptor distribution could underlie the evolution of species differences in behavior. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 203,220, 2002 [source]

    Histology, histochemistry and morphometry of the ovary of the adult plains viscacha (Lagostomus maximus) in different reproductive stages

    ACTA ZOOLOGICA, Issue 4 2009
    Mirta Alicia Flamini
    Abstract Lagostomus maximus is a South American Hystricognathi rodent whose reproductive behaviour shows characteristics unusual for mammals, such as polyovulation (200,800 oocytes) and a high rate of embryo mortality. Thirty-six mature females captured in the province of Buenos Aires showed different physiological reproductive stages. Most of them presented a postpartum oestrus in August,September. This characteristic is different from that reported in other geographical areas. The stages considered were: anoestrus, follicular phase, early pregnancy and late pregnancy. The ovaries were light-pink and smooth and presented a tortuous cord-like aspect. Many primordial follicles were found in all the females studied. Follicles in different states of maturation and primary and accessory corpora lutea were observed in the cortex. These structures were smaller than those present in other related species. Follicles did not project into the surface of the organ. Calcified follicles of diverse size were found in all the ovaries. Atretic follicles were found in all the stages analysed. Interstitial tissue surrounding the follicles and the corpora lutea was also observed. The number and proportion of different cortical structures varied in the physiological stages analysed. The ovaries of the viscacha have differential characteristics in comparison to other Hystricognathi, some of them related to polyovulation. [source]

    Opposing effects of competitive exclusion on the phylogenetic structure of communities

    ECOLOGY LETTERS, Issue 9 2010
    Margaret M. Mayfield
    Ecology Letters (2010) 13: 1085,1093 Abstract Though many processes are involved in determining which species coexist and assemble into communities, competition is among the best studied. One hypothesis about competition's contribution to community assembly is that more closely related species are less likely to coexist. Though empirical evidence for this hypothesis is mixed, it remains a common assumption in certain phylogenetic approaches for inferring the effects of environmental filtering and competitive exclusion. Here, we relate modern coexistence theory to phylogenetic community assembly approaches to refine expectations for how species relatedness influences the outcome of competition. We argue that two types of species differences determine competitive exclusion with opposing effects on relatedness patterns. Importantly, this means that competition can sometimes eliminate more different and less related taxa, even when the traits underlying the relevant species differences are phylogenetically conserved. Our argument leads to a reinterpretation of the assembly processes inferred from community phylogenetic structure. [source]

    Reciprocal specialization in ecological networks

    ECOLOGY LETTERS, Issue 9 2009
    Lucas N. Joppa
    Abstract Theories suggest that food webs might consist of groups of species forming ,blocks', ,compartments' or ,guilds'. We consider ecological networks , subsets of complete food webs , involving species at adjacent trophic levels. Reciprocal specializations occur when (say) a pollinator (or group of pollinators) specializes on a particular flower species (or group of such species) and vice versa. Such specializations tend to group species into guilds. We characterize the level of reciprocal specialization for both antagonistic interactions , particularly parasitoids and their hosts , and mutualistic ones , such as insects and the flowers that they pollinate. We also examine whether trophic patterns might be ,palimpsests', that is, there might be reciprocal specialization within taxonomically related species within a network, but these might be obscured when these relationships are combined. Reciprocal specializations are rare in all these systems when tested against the most conservative null model. [source]

    Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species

    ECOLOGY LETTERS, Issue 10 2008
    Jonathan B. Losos
    Abstract Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs. [source]

    Facilitation can increase the phylogenetic diversity of plant communities

    ECOLOGY LETTERS, Issue 11 2007
    Alfonso Valiente-Banuet
    Abstract With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity. [source]

    Competition and character displacement in two species of scincid lizards

    ECOLOGY LETTERS, Issue 3 2002
    Jane Melville
    Abstract The role of competition in habitat occupation and character displacement is investigated in two species of alpine lizards (Niveoscincus microlepidotus and N. greeni), using both controlled competition experiments and field-based ecological work. Competition experiments demonstrate that interspecific aggression occurs between these closely related species, with the larger and more aggressive N. greeni being socially dominant. When these species occur in sympatry, N. microlepidotus was found to shift its habitat occupation to the heathlands, which provide less thermal opportunities. In addition, a reduction in body size occurred in both adult and neonatal N. microlepidotus at sympatric field sites. Differences in body size between N. microlepidotus and N. greeni in sympatry were significantly greater than in allopatry, indicating that character displacement is occurring. Results, combined with previous molecular and biogeographical data, suggest that there is a trend towards a reduction in body size and a restriction in habitat occupation in N. microlepidotus in the north-east periphery of its distribution, which is shaped by competition with N. greeni. [source]

    Systematic and morphological studies of the genus Chaetopleurophora Schmitz (Diptera: Phoridae) occurring in Japan

    Hiroto NAKAYAMA
    Abstract Japanese species of the genus Chaetopleurophora are reviewed. All belong to the C. erythronota group. The following three species from Japan are described: C. rhomboidea sp. nov., C. pygidialis Schmitz and C. dividua sp. nov. The male and female genitalia are studied and further examples of unique characters of the genus including asymmetric features are added. The male aedeagus of the genus is illustrated for the first time. The aedeagus of the species treated in this study consists of only two components, the inner core plate and the outer jacket plate. The jacket plate wraps sinistrally around the core plate. The combination of the core plate and the jacket plate forms complex, asymmetric features of the aedeagus in the Phoridae. The structure around the genital opening in the female genitalia protrudes posteriorly under the segment IX + X, and shows asymmetric features in C. rhomboidea sp. nov. with a bilaterally different degree of sclerotization, shifted genital opening to the right side and a membranous ribbon just on the left side. In addition, C. dividua sp. nov. is different from most of the species in the C. erythronota group, and very closely related to C. multiseriata (known in North America) in the male and female genitalia, wing venation and bristle formation on the scutellum. It is suggested that C. dividua sp. nov. forms a monophyletic group with C. multiseriata and the related species. [source]

    Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing

    Claudia Dalmastri
    Summary The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994,2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their addition to our global MLST database increased the ST diversity by 10%. [source]

    Biogeography of the marine actinomycete Salinispora

    Paul R. Jensen
    Summary Marine actinomycetes belonging to the genus Salinispora were cultured from marine sediments collected at six geographically distinct locations. Detailed phylogenetic analyses of both 16S rRNA and gyrB gene sequences reveal that this genus is comprised of three distinct but closely related clades corresponding to the species Salinispora tropica, Salinispora arenicola and a third species for which the name ,Salinispora pacifica' is proposed. Salinispora arenicola was cultured from all locations sampled and provides clear evidence for the cosmopolitan distribution of an individual bacterial species. The co-occurrence of S. arenicola with S. tropica and S. pacifica suggests that ecological differentiation as opposed to geographical isolation is driving speciation within the genus. All Salinispora strains cultured to date share greater than 99% 16S rRNA gene sequence identity and thus comprise what has been described as a microdiverse ribotype cluster. The description of this cluster as a new genus, containing multiple species, provides clear evidence that fine-scale 16S rDNA sequence analysis can be used to delineate among closely related species and that more conservative operational taxonomic unit values may significantly underestimate global species diversity. [source]

    A Quantified Ethogram for Oviposition in Triturus Newts: Description and Comparison of T. helveticus and T. vulgaris

    ETHOLOGY, Issue 4 2005
    Karen M. Norris
    Female newts of the genus Triturus deposit and wrap their eggs individually in the submerged leaves of aquatic macrophytes. Although this behaviour has previously been described, the different elements of the oviposition process have not been fully characterized nor any attempt made to quantify the behavioural elements. The study examined the oviposition behaviour of the two similarly sized species, Triturus helveticus and T. vulgaris on a standardized substrate macrophyte, Rorippa nasturtium,aquaticum. Continuous focal sampling was used to develop a baseline of discrete behavioural elements enabling quantification and comparison of oviposition behaviour between the two species. The results showed that the same pattern of elements was followed for each egg laid and the same key elements of the process were present in each newt species. Although these are broadly similar in size, there were striking differences in certain aspects of the oviposition sequence between the two species. Key findings were that leaf sniffing and leaf flexing and a measure of the duration of ovipositing were all significantly greater in females of T. helveticus and females of T. vulgaris laid significantly more eggs than those of T. helveticus in a standard observation period. The work presented here defines a baseline ethogram and shows how it can be used to reveal quantifiable differences in closely related species. This demonstrates its value in furthering our understanding of oviposition , a key aspect of female behaviour currently understudied in Triturus behavioural ecology, despite its intrinsic interest and value in understanding recruitment and maintenance of populations. [source]

    Evolution of Courtship Behaviour Patterns and Reproductive Isolation in the Desmognathus ochrophaeus Complex

    ETHOLOGY, Issue 5 2002
    Louise S. Mead
    The extent to which differences in courtship behaviour patterns act as mechanisms of reproductive isolation is critical to understanding both speciation and the evolution of these behaviour patterns. While numerous studies have investigated intraspecific and interspecific differences in courtship, fewer interpret results in a phylogenetic framework. We describe and analyse geographic variation in the courtship behaviour patterns of the Allegheny Dusky salamander (Desmognathus ochrophaeus). We then examine courtship among closely related species in the D. ochrophaeus complex in a phylogenetic context. We found that populations of D. ochrophaeus separated by extensive geographic distances show little variation in courtship behaviour patterns and are sexually compatible. This contrasts with significant levels of sexual isolation between D. ochrophaeus and other species in the complex. Mapping behaviour patterns onto a phylogeny that we generated from cytochrome b sequences indicates that two behaviour patterns present in the courtship sequence of other members in the complex have either been lost in D. ochrophaeus or gained independently in other species in the complex. Loss of these behaviour patterns may result in reproductive isolation between D. ochrophaeus and its sister taxon, D. orestes. [source]

    Anti-Predator Strategies and Grouping Patterns in White-Tailed Deer and Mule Deer

    ETHOLOGY, Issue 4 2001
    Susan Lingle
    White-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus) are closely related species of similar size that differ in their anti-predator behavior. White-tails flee from coyotes (Canis latrans), whereas mule deer typically stand their ground and attack this predator. I used observations of coyotes hunting deer to identify: (i) changes in group structure made in response to coyotes; and (ii) the relationship between group structure and the risk of predation for each species. In response to coyotes, groups of mule deer merged with other groups and individuals bunched together. Predation attempts were more likely to escalate when groups split and individuals failed to bunch. Coyotes typically attacked mule deer that were in outlying positions, and these deer had to move to central positions to end attacks. Due to the high frequency of attacks on small groups as well as to the level of dilution of risk, individuals in small mule deer groups were at high risk of being attacked compared with those in larger groups. In contrast to mule deer, white-tails made no consistent changes in group size or formation, and coyotes attacked individuals in central as well as in outlying positions. Variation in aspects of group cohesion was not related to the vulnerability of white-tails, and there was no obvious difference in the risk of attack facing individuals in groups of different size. These results suggest that coyote predation selects for relatively large, cohesive groups in mule deer, apparently because this type of group improves their ability to deter coyotes. Coyote predation does not have similar effects on groups formed by white-tails, which use flight rather than deterrence to avoid predation. The benefits of responding cohesively, occupying certain positions within groups, and forming groups of a certain size can vary widely depending on the anti-predator strategies used by an animal. [source]

    Development of Species Preferences in Two Hamsters, Phodopus campbelli and Phodopus sungorus: Effects of Cross-Fostering

    ETHOLOGY, Issue 3 2001
    Nina YU.
    Experiments were conducted to investigate species-specific preferences in two closely related species of hamsters, Phodopus campbelli and Phodopus sungorus. Male hamsters that were raised with conspecifics spent more time investigating an anaesthetized conspecific male than a heterospecific male, and also spent more time investigating odours of conspecifics than those of heterospecifics (midventral gland, urine, and saccular secretion). Cross-fostered P. sungorus males reversed their normal preferences, spending more time investigating stimuli (anaesthetized males and all three odours) of the foster species. Cross-fostered P. campbelli males also investigated an anaesthetized male of the foster species more than a male of their own species, but did not show a preference for odours alone. Social experience during the 15 d immediately following weaning also influenced these preferences. If exposures during and after nesting were to heterospecifics the preference for heterospecifics was strengthened; if either period of experience was with a conspecific, this eliminated the preference for heterospecifics in P. sungorus but did not influence the lack of a preference in P. campbelli. Thus, early experience during both the nestling stage and the 15 d after weaning influenced responses to species-typical cues in both species, but it had a more pronounced effect in P. sungorus. [source]

    Detection and Avoidance of Predators in White-Tailed Deer (Odocoileus virginianus) and Mule Deer (O. hemionus)

    ETHOLOGY, Issue 2 2001
    Susan Lingle
    In this paper, we investigate the relationship between early detection of predators and predator avoidance in white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus), two closely related species that differ in their habitat preferences and in their anti-predator behavior. We used observations of coyotes (Canis latrans) hunting deer to test whether the distance at which white-tails and mule deer alerted to coyotes was related to their vulnerability to predation. Coyote encounters with both species were more likely to escalate when deer alerted at shorter distances. However, coyote encounters with mule deer progressed further than encounters with white-tails that alerted at the same distance, and this was not due to species differences in group size or habitat. We then conducted an experiment in which a person approached groups of deer to compare the detection abilities and the form of alert response for white-tails and mule deer, and for age groups within each species. Mule deer alerted to the approacher at longer distances than white-tails, even after controlling for variables that were potentially confounding. Adult females of both species alerted sooner than conspecific juveniles. Mule deer almost always looked directly at the approacher as their initial response, whereas white-tails were more likely to flee or to look in another direction with no indication that they pinpointed the approacher during the trial. Mule deer may have evolved the ability to detect predators earlier than white-tails as an adaptation to their more open habitats, or because they need more time to coordinate subsequent anti-predator defenses. [source]

    Electron-Sponge Behavior, Reactivity and Electronic Structures of Cobalt-Centered Cubic Co9Te6(CO)8 Clusters

    Mustapha Bencharif
    Abstract Extended investigations of the reaction sequence [Cp,2Nb(Te2)H]/CH3Li/[Co2(CO)8] (Cp, = tBuC5H4) led to the identification of Lin[3] {3 = [Co9Te6(CO)8]; n = 1, 2} salts through their transformation with [PPN]Cl into [PPN]n[3] (PPN = Ph3PNPPh3). These compounds form in the solid state columnar ([PPN][3]) or undulated 2D ([PPN]2[3]) supramolecular networks. Electrochemical studies of [Cp*2Nb(CO)2][3] (Cp* = C5Me5) or [Na(THF)6][3] revealed the presence of the redox couples [3],/[3]2,/[3]3,/[3]4,/[3]5, regardless of the nature of the cation, whereas in the anodic part oxidative degradation of the cluster takes place. This behavior is in agreement with the observation that [3], containing salts form with PPh3AuCl or dppe decomposition products like [(PPh3)2Au][CoCl3PPh3] or [Co(CO)2dppe]2(,-Te). A neutral cluster comprising the Co@Co8(,4 -Te)6 core formed in the reaction of [Cp*2Nb(CO)2][Co11Te7(CO)10] with PPh3AuCl, which gave [Co9Te6(CO)4(PPh3)4] (4) after oxidative cluster degradation and CO substitution. 4 was characterized by X-ray crystallography. DFT calculations carried out on all members of the [3]n (n = +1 to ,5) family and on related species indicate that there is no significant Jahn,Teller distortion (and therefore no connectivity change) for any of the considered electron counts. Magnetic investigations on [PPN][3] show that the ground state of [3], is a spin triplet with spins interacting antiferromagnetically in a 1D space.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    EVOLUTION, Issue 1 2009
    Matthew D. Dean
    Barriers to gene flow can arise at any stage in the reproductive sequence. Most studies of reproductive isolation focus on premating or postzygotic phenotypes, leaving the importance of differences in fertilization rate overlooked. Two closely related species of house mice, Mus domesticus and M. musculus, form a narrow hybrid zone in Europe, suggesting that one or more isolating factors operate in the face of ongoing gene flow. Here, we test for differences in fertilization rate using laboratory matings as well as in vitro sperm competition assays. In noncompetitive matings, we show that fertilization occurs significantly faster in conspecific versus heterospecific matings and that this difference arises after mating and before zygotes form. To further explore the mechanisms underlying this conspecific advantage, we used competitive in vitro assays to isolate gamete interactions. Surprisingly, we discovered that M. musculus sperm consistently outcompeted M. domesticus sperm regardless of which species donated ova. These results suggest that in vivo fertilization rate is mediated by interactions between sperm, the internal female environment, and/or contributions from male seminal fluid. We discuss the implications of faster conspecific fertilization in terms of reproductive isolation among these two naturally hybridizing species. [source]


    EVOLUTION, Issue 12 2008
    Lila Fishman
    Conspecific pollen precedence (CPP) is a major component of reproductive isolation between many flowering plant taxa and may reveal mechanisms of gametophytic evolution within species, but little is known about the genetic basis and evolutionary history of CPP. We systematically investigated the genetic architecture of CPP using patterns of transmission ratio distortion (TRD) in F2 and backcross hybrids between closely related species of Mimulus (Phrymaceae) with divergent mating systems. We found that CPP in Mimulus hybrids was polygenic and was the majority source of interspecific TRD genome-wide, with at least eight genomic regions contributing to the transmission advantage of M. guttatus pollen grains on M. guttatus styles. In aggregate, these male-specific transmission ratio distorting loci (TRDLs) were more than sufficient to account for the 100% precedence of pure M. guttatus pollen over M. nasutus pollen in mixed pollinations of M. guttatus. All but one of these pollen TRDLs were style-dependent; that is, we observed pollen TRD in F1 and/or M. guttatus styles, but not in M. nasutus styles. These findings suggest that species-specific differences in pollen tube performance accumulate gradually and may have been driven by coevolution between pollen and style in the predominantly outcrossing M. guttatus. [source]


    EVOLUTION, Issue 11 2008
    Dan L. Warren
    Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology. [source]


    EVOLUTION, Issue 10 2007
    Frédéric Guillaume
    In 1996, Schluter showed that the direction of morphological divergence of closely related species is biased toward the line of least genetic resistance, represented by gmax, the leading eigenvector of the matrix of genetic variance,covariance (the G -matrix). G is used to predict the direction of evolutionary change in natural populations. However, this usage requires that G is sufficiently constant over time to have enough predictive significance. Here, we explore the alternative explanation that G can evolve due to gene flow to conform to the direction of divergence between incipient species. We use computer simulations in a mainland,island migration model with stabilizing selection on two quantitative traits. We show that a high level of gene flow from a mainland population is required to significantly affect the orientation of the G -matrix in an island population. The changes caused by the introgression of the mainland alleles into the island population affect all aspects of the shape of G (size, eccentricity, and orientation) and lead to the alignment of gmax with the line of divergence between the two populations' phenotypic optima. Those changes decrease with increased correlation in mutational effects and with a correlated selection. Our results suggest that high migration rates, such as those often seen at the intraspecific level, will substantially affect the shape and orientation of G, whereas low migration (e.g., at the interspecific level) is unlikely to substantially affect the evolution of G. [source]


    EVOLUTION, Issue 5 2007
    Carlos Daniel Cadena
    Interspecific competition might drive the evolution of ecological niches and result in pairs of formerly competing species segregating along ecological gradients following a process of character displacement. This mechanism has been proposed to account for replacement of related species along gradients of elevation in many areas of the world, but the fundamental issue of whether competition is responsible for the origin of elevational replacements has not been tested. To test hypotheses about the role of interspecific competition in the origin of complementary elevational ranges, I combined molecular phylogenetics, phylogeography, and population genetic analyses on Buarremon torquatus and B. brunneinucha (Aves, Emberizidae), whose patterns of elevational distribution suggest character displacement or ecological release. The hypothesis that elevational distributions in these species changed in opposite directions as a result of competition is untenable because: (1) a historical expansion of the range of B. brunneinucha into areas occupied by B. torquatus was not accompanied by a shift in the elevational range of the former species; (2) when B. brunneinucha colonized the range of B. torquatus, lineages of the latter distributions had already diverged; and (3) historical trends in effective population size do not suggest populations with elevational ranges abutting those of putative competitors have declined as would be expected if competition caused range contractions. However, owing to uncertainty in coalescent estimates of historical population sizes, the hypothesis that some populations of B. torquatus have declined cannot be confidently rejected, which suggests asymmetric character displacement might have occurred. I suggest that the main role of competition in elevational zonation may be to act as a sorting mechanism that allows the coexistence along mountain slopes only of ecologically similar species that differ in elevational distributions prior to attaining sympatry. The contrasting biogeographic histories of B. brunneinucha and B. torquatus illustrate how present-day ecological interactions can have recent origins, and highlights important challenges for testing the hypothesis of character displacement in the absence of data on population history and robust reconstructions of the evolution of traits and geographic ranges. [source]


    EVOLUTION, Issue 10 2006
    Mark A. McPeek
    Abstract Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis. [source]


    EVOLUTION, Issue 7 2006
    Chris D. Jiggins
    Abstract Species level phylogenetic hypotheses can be used to explore patterns of divergence and speciation. In the tropics, speciation is commonly attributed to either vicariance, perhaps within climate-induced forest refugia, or ecological speciation caused by niche adaptation. Mimetic butterflies have been used to identify forest refugia as well as in studies of ecological speciation, so they are ideal for discriminating between these two models. The genus Ithomia contains 24 species of warningly colored mimetic butterflies found in South and Central America, and here we use a phylogenetic hypothesis based on seven genes for 23 species to investigate speciation in this group. The history of wing color pattern evolution in the genus was reconstructed using both parsimony and likelihood. The ancestral pattern for the group was almost certainly a transparent butterfly, and there is strong evidence for convergent evolution due to mimicry. A punctuationist model of pattern evolution was a significantly better fit to the data than a gradualist model, demonstrating that pattern changes above the species level were associated with cladogenesis and supporting a model of ecological speciation driven by mimicry adaptation. However, there was only one case of sister species unambiguously differing in pattern, suggesting that some recent speciation events have occurred without pattern shifts. The pattern of geographic overlap between clades over time shows that closely related species are mostly sympatric or, in one case, parapatric. This is consistent with modes of speciation with ongoing gene flow, although rapid range changes following allopatric speciation could give a similar pattern. Patterns of lineage accumulation through time differed significantly from that expected at random, and show that most of the extant species were present by the beginning of the Pleistocene at the latest. Hence Pleistocene refugia are unlikely to have played a major role in Ithomia diversification. [source]


    EVOLUTION, Issue 2 2005
    H. Carl Gerhardt
    Abstract Signals used for mate choice and receiver preferences are often assumed to coevolve in a lock-step fashion. However, sender-receiver coevolution can also be nonparallel: even if species differences in signals are mainly quantitative, females of some closely related species have qualitatively different preferences and underlying mechanisms. T o-alternative playback experiments using synthetic calls that differed in fine-scale temporal properties identified the receiver criteria in females of the treefrog Hyla chrysoscelis for comparison with female criteria in a cryptic tetraploid species (H. versicolor); detailed preference functions were also generated for both species based on natural patterns of variation in temporal properties. The species were similar in three respects: (1) pulses of constant frequency were as attractive as the frequency-modulated pulses typical of conspecific calls; (2) changes in preferences with temperature paralleled temperature-dependent changes in male calls; and (3) preference functions were unimodal, with weakly defined peaks estimated at values slightly higher than the estimated means in conspecific calls. There were also species differences: (1) preference function slopes were steeper in H. chrysoscelis than in H. versicolor; (2) preferences were more intensity independent in H. chrysoscelis than in H. versicolor; (3) a synergistic effect of differences in pulse rate and shape on preference strength occurred in H. versicolor but not in H. chrysoscelis; and (4) a preference for the pulse shape typical of conspecific calls was expressed at the species-typical pulse duration in H. versicolor but not in H. chrysoscelis. However, females of H. chrysoscelis did express a preference based on pulse shape when tested with longer-than-average pulses, suggesting a hypothesis that could account for some examples of nonparallel coevolution. Namely, preferences can be hidden or revealed depending on the direction of quantitative change in a signal property relative to the threshold for resolving differences in that property. The results of the experiments reported here also predict patterns of mate choice within and between contemporary populations. First, intraspecific mate choice in both species is expected to be strongly influenced by variation in temperature among calling males. Second, simultaneous differences in pulse rate and pulse shape are required for effective species discrimination by females of H. versicolor but not by females of H. chrysoscelis. Third, there is greater potential for sexual selection within populations and for discrimination against calls produced by males in other geographically remote populations in H. chrysoscelis than in H. versicolor. [source]


    EVOLUTION, Issue 9 2004
    Bret A. Payseur
    Abstract A complete understanding of the speciation process requires the identification of genomic regions and genes that confer reproductive barriers between species. Empirical and theoretical research has revealed two important patterns in the evolution of reproductive isolation in animals: isolation typically arises as a result of disrupted epistatic interactions between multiple loci and these disruptions map disproportionately to the X chromosome. These patterns suggest that a targeted examination of natural gene flow between closely related species at X-linked markers with known positions would provide insight into the genetic basis of speciation. We take advantage of the existence of genomic data and a well-documented European zone of hybridization between two species of house mice, Mus domesticus and M. musculus, to conduct such a survey. We evaluate patterns of introgression across the hybrid zone for 13 diagnostic X-linked loci with known chromosomal positions using a maximum likelihood model. Interlocus comparisons clearly identify one locus with reduced introgression across the center of the hybrid zone, pinpointing a candidate region for reproductive isolation. Results also reveal one locus with high frequencies of M. domesticus alleles in populations on the M. musculus side of the zone, suggesting the possibility that positive selection may act to drive the spread of alleles from one species on to the genomic background of the other species. Finally, cline width and cline center are strongly positively correlated across the X chromosome, indicating that gene flow of the X chromosome may be asymmetrical. This study highlights the utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice. [source]


    EVOLUTION, Issue 3 2004
    Peter H. Niewiarowski
    Abstract Over the past 15 years, phylogenetic comparative methods (PCMs) have become standard in the study of life-history evolution. To date, most studies have focused on variation among species or higher taxonomic levels, generally revealing the presence of significant phylogenetic effects as well as residual variation potentially attributable to adaptive evolution. Recently, population-level phylogenetic hypotheses have become available for many species, making it possible to apply PCMs directly to the level at which experiments are typically used to test adaptive hypotheses. In this study, we present the results of PCMs applied to life-history variation among populations of the widespread and well-studied lizard Sceloporus undulatus. Using S. undulatus (which may represent four closely related species) as an example, we explore the benefits of using PCMs at the population level, as well as consider the importance of several thorny methodological problems including but not limited to nonindependence of populations, lack of sufficient variation in traits, and the typically small sample sizes dictated by the difficulty of collecting detailed demographic data. We show that phylogenetic effects on life-history variation among populations of S. undulatus appear to be unimportant, and that several classic trade-offs expected by theory and revealed by many interspecific comparisons are absent. Our results suggest that PCMs applied to variation in life-history traits below the species level may be of limited value, but more studies like ours are needed to draw a general conclusion. Finally, we discuss several outstanding problems that face studies seeking to apply PCMs below the species level. [source]


    EVOLUTION, Issue 9 2002
    Therese Ann Markow
    Abstract., As commonly observed among closely related species within a variety of taxa, Drosophila species differ considerably in whether they exhibit sexual dimorphism in coloration or morphology. Those Drosophila species in which male external sexual characters are minimal or absent tend, instead, to have exaggerated ejaculate traits such as sperm gigantism or seminal nutrient donations. Underlying explanations for the interspecific differences in the presence of external morphological sexual dimorphism versus exaggerated ejaculate traits are addressed here by examining the opportunity for sexual selection on males to occur before versus after mating in 21 species of Drosophila. Female remating frequency, an important component of the operational sex ratio, differs widely among Drosophila species and appears to dictate whether the arena of sexual selection is prior to, as opposed to after, copulation. Infrequent female mating results in fewer mating opportunities for males and thus stronger competition for receptive females that favors the evolution of male characters that maximize mating success. On the other hand, rapid female remating results in overlapping ejaculates in the female reproductive tract, such that ejaculate traits which enhance fertilization success are favored. The strong association between female remating frequency in a given species and the presence of sexually selected external versus internal male characters indicates that the relationship be examined in other taxa as well. [source]


    EVOLUTION, Issue 5 2000
    David W. Pfennig
    Abstract Biologists have long known that closely related species are often phenotypically different where they occur together, but are indistinguishable where they occur alone. The causes of such character displacement are controversial, however. We used polyphenic spadefoot toad tadpoles (Spea bombifrons and S. multiplicata) to test the hypothesis that character displacement evolves to minimize competition for food. We also sought to evaluate the role of phenotypic plasticity in the mediation of competitive interactions between these species. Depending on their diet, individuals of both species develop into either a small-headed omnivore morph, which feeds mostly on detritus, or a large-headed carnivore morph, which specializes on shrimp. Laboratory experiments and surveys of natural ponds revealed that the two species were more dissimilar in their tendency to produce carnivores when they occurred together than when they occurred alone. This divergence in carnivore production was expressed as both character displacement (where S. multiplicata's propensity to produce carnivores was lower in sympatry than in allopatry) and as phenotypic plasticity (where S. multiplicata facultatively enhanced carnivore production in S. bombifrons, and S. bombifrons facultatively suppressed carnivore production in S. multiplicata). In separate experiments, we established that S. bombifrons (the species for which carnivore production was enhanced) was the superior competitor for shrimp. Conversely, S. multiplicata (the species for which carnivore production was suppressed and omnivore production enhanced) was the superior competitor for detritus. These results therefore demonstrate that selection to minimize competition for food can cause character displacement. They also suggest that both character displacement and phenotypic plasticity may mediate competitive interactions between species. [source]

    An early temperature-sensitive period for the plasticity of segment number in the centipede Strigamia maritima

    Vincent Vedel
    SUMMARY Geophilomorph centipedes show variation in segment number (a) between closely related species and (b) within and between populations of the same species. We have previously shown for a Scottish population of the coastal centipede Strigamia maritima that the temperature of embryonic development is one of the factors that affects the segment number of hatchlings, and hence of adults, as these animals grow epimorphically,that is, without postembryonic addition of segments. Here, we show, using temperature-shift experiments, that the main developmental period during which embryos are sensitive to environmental temperature is surprisingly early, during blastoderm formation and before, or very shortly after, the onset of segmentation. [source]