Relevant Targets (relevant + target)

Distribution by Scientific Domains


Selected Abstracts


SCCA2 inhibits TNF-mediated apoptosis in transfected HeLa cells.,

FEBS JOURNAL, Issue 22 2001
TNF-induced cathepsin G is a candidate target, The reactive centre loop sequence is essential for this function
The squamous cell carcinoma antigens, SCCA1 and SCCA2, are members of the serine protease inhibitors (serpin) superfamily and are transcribed by two tandomly arrayed genes. A number of serpins are known to inhibit apoptosis in mammalian cells. In this study we demonstrate the ability of SCCA2 to inhibit tumor necrosis factor-alpha (TNF,)-induced apoptosis. HeLa cells stably transfected with SCCA2 cDNA had increased percentage cell survival and reduced DNA fragmentation. We investigated if the reactive centre loop (RCL) was necessary to allow SCCA2 to inhibit TNF,-mediated apoptosis. The RCL amino acids (E353Q, L354G, S355A), flanking the predicted cleavage site, were mutated and the resulting SCCA2 lost both the ability to inhibit cathepsin G and to protect stably transfected cells from TNF,-induced apoptosis. The presence of SCCA2 caused a decrease in the activation of caspase-3 upon induction with TNF, but no direct inhibition of caspases by SCCA2 has been found. Expression of cathepsin G was found to be induced in HeLa cells following treatment with TNF,. This protease has recently been shown to have a role in apoptosis through cleavage of substrates, so maybe the relevant target for SCCA2 in this system. [source]


Matrix metalloproteinase-2 is involved in myelination of dorsal root ganglia neurons

GLIA, Issue 5 2009
Helmar C. Lehmann
Abstract Matrix metalloproteinases (MMPs) comprise a large family of endopeptidases that are capable of degrading all extracellular matrix components. There is increasing evidence that MMPs are not only involved in tissue destruction but may also exert beneficial effects during axonal regeneration and nerve remyelination. Here, we provide evidence that MMP-2 (gelatinase A) is associated with the physiological process of myelination in the peripheral nervous system (PNS). In a myelinating co-culture model of Schwann cells and dorsal root ganglia neurons, MMP-2 expression correlated with the degree of myelination as determined by immunocytochemistry, zymography, and immunosorbent assay. Modulation of MMP-2 activity by chemical inhibitors led to incomplete and aberrant myelin formation. In vivo MMP-2 expression was detected in the cerebrospinal fluid (CSF) of patients with Guillain-Barré syndrome as well as in CSF and sural nerve biopsies of patients with chronic inflammatory demyelinating polyneuropathy. Our findings suggest an important, previously unrecognized role for MMP-2 during myelination in the PNS. Endogenous or exogenous modulation of MMP-2 activity may be a relevant target to enhance regeneration in demyelinating diseases of the PNS. © 2008 Wiley-Liss, Inc. [source]


MAGE-A9 mRNA and protein expression in bladder cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 10 2007
Valérie Picard
Abstract In a previous analysis, we showed that MAGE-As were the most frequently expressed cancer-testis antigens in human bladder tumours. Here, we further characterized by RT-PCR the expression of this family of genes by analyzing specifically MAGE-A3, -A4, -A8 and -A9 mRNAs in 46 bladder tumours and 10 normal urothelia. We found that they were expressed in 30, 33, 56 and 54% of tumours, respectively. Although MAGE-A8 was the most frequent, its expression was low and was also found in most normal urothelia. The other MAGE-A mRNAs were all tumour-specific but MAGE-A9 mRNA was expressed at a higher level and was two times more frequent in superficial than in invasive tumours. To study the expression of the protein, we produced 2 MAGE-A9-specific monoclonal antibodies (mAbs) presenting no cross-reactivity with other MAGE-A proteins. MAb 14A11, was used to analyse the expression of the antigen in testis and tumour samples by immunohistochemistry. In testis, MAGE-A9 expression was restricted to primary spermatocytes. Most bladder tumours that expressed the MAGE-A9 transcript were positive with mAb 14A11. Staining was heterogeneous but half of the tumours showed over 75% positive cells. Finally, we showed that treatment of bladder cancer cells with the methylation inhibitor, 5-aza-2,-deoxycytidine, alone or in combination with the histone deacetylase inhibitors MS-275 and 4-phenylbutyrate could strongly induce the expression of MAGE-A9. These results show that MAGE-A9 is frequently expressed in superficial bladder cancer and could be a relevant target for immunotherapy or chemoimmunotherapy because its expression can be induced by chemotherapeutic drugs. © 2007 Wiley-Liss, Inc. [source]


Macromolecular Crystallography As A Tool For Investigating Drug, Enzyme And Receptor Interactions

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2000
Aaron J Oakley
SUMMARY 1. Protein crystallography is an essential tool for the discovery and investigation of pharmacological interactions at the molecular level. It allows investigators to directly visualize the three-dimensional structures of proteins, including enzymes, receptors and hormones. 2. Increasingly, knowledge of these interactions is being used in the drug-discovery process. This is popularly called structure-based drug design. The desired drug could be an enzyme inhibitor or an agonist that mimics endogenous transmitters or hormones. 3. Once the 3-D structure of a pharmacologically relevant target is known, computational processes can be used to search databases of compounds to identify ones that may interact strongly with the target. Lead compounds can be improved using the 3-D structure of the complex of the lead compound and its biological target. 4. The present review describes the processes involved in the determination of a structure by means of protein crystallography and the use of structures in the drug-discovery process. A number of successful examples of structure-based drug design are described. The limitations of the techniques are discussed. [source]


Revisiting the specificity of the MHC class,II transactivator CIITA in vivo

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2006

Abstract CIITA is a master regulatory factor for the expression of MHC class,II (MHC-II) and accessory genes involved in Ag presentation. It has recently been suggested that CIITA also regulates numerous other genes having diverse functions within and outside the immune system. To determine whether these genes are indeed relevant targets of CIITA in vivo, we studied their expression in CIITA-transgenic and CIITA-deficient mice. In contrast to the decisive control of MHC-II and related genes by CIITA, nine putative non-MHC target genes (Eif3s2, Kpna6, Tap1, Yars, Col1a2, Ctse, Ptprr, Tnfsf6 and Plxna1) were found to be CIITA independent in all cell types examined. Two other target genes, encoding IL-4 and IFN-,, were indeed found to be up- and down-regulated, respectively, in CIITA-transgenic CD4+ T,cells. However, there was no correlation between MHC-II expression and this Th2 bias at the level of individual transgenic T,cells, indicating an indirect control by CIITA. These results show that MHC-II-restricted Ag presentation, and its indirect influences on T,cells, remains the only pathway under direct control by CIITA in vivo. They also imply that precisely regulated MHC-II expression is essential for maintaining a proper Th1-Th2 balance. [source]


Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
C. Troidl
Abstract An important goal in cardiology is to minimize myocardial necrosis and to support a discrete but resilient scar formation after myocardial infarction (MI). Macrophages are a type of cells that influence cardiac remodelling during MI. Therefore, the goal of the present study was to investigate their transcriptional profile and to identify the type of activation during scar tissue formation. Ligature of the left anterior descending coronary artery was performed in mice. Macrophages were isolated from infarcted tissue using magnetic cell sorting after 5 days. The total RNA of macrophages was subjected to microarray analysis and compared with RNA from MI and LV-control. mRNA abundance of relevant targets was validated by quantitative real-time PCR 2, 5 and 10 days after MI (qRT-PCR). Immunohistochemistry was performed to localize activation type-specific proteins. The genome scan revealed 68 targets predominantly expressed by macrophages after MI. Among these targets, an increased mRNA abundance of genes, involved in both the classically (tumour necrosis factor ,, interleukin 6, interleukin 1,) and the alternatively (arginase 1 and 2, mannose receptor C type 1, chitinase 3-like 3) activated phenotype of macrophages, was found 5 days after MI. This observation was confirmed by qRT-PCR. Using immunohistochemistry, we confirmed that tumour necrosis factor ,, representing the classical activation, is strongly transcribed early after ligature (2 days). It was decreased after 5 and 10 days. Five days after MI, we found a fundamental change towards alternative activation of macrophages with up-regulation of arginase 1. Our results demonstrate that macrophages are differentially activated during different phases of scar tissue formation after MI. During the early inflammatory phase, macrophages are predominantly classically activated, whereas their phenotype changes during the important transition from inflammation to scar tissue formation into an alternatively activated type. [source]


Regional and Developmental Expression of the Npc1 mRNA in the Mouse Brain

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
A. Prasad
Abstract: Niemann-Pick type C (NP-C) disease is a fatal, autosomal recessive disorder of cholesterol metabolism that results in progressive central nervous system deterioration and premature death. Recently, a gene mutated in NP-C disease (NPC1) was identified in both human patients and in the npcnih mouse model. Although the function of the NPC1 gene is at present unknown, determining the pattern of its expression in the brain may facilitate identification of the mechanisms underlying the neuropathology of this disease and in identifying relevant targets for any potential therapeutic intervention. We have used in situ hybridization techniques to characterize the pattern of Npc1 mRNA expression in both the wild-type and the npcnih mutant mouse brain. In adult animals of both genotypes, the Npc1 mRNA was detected in the majority of neurons in nearly all regions, but at significantly higher levels in the cerebellum and in specific pontine nuclei. Analysis of Npc1 mRNA levels during development in the wild-type mouse indicated that this transcript was expressed in neurons as early as embryonic day 15 and that a significant region-specific pattern of expression was established by postnatal day 7. Our data suggest that whereas the NPC1 gene is widely expressed in neurons of the brain, the higher levels of expression in the cerebellum and pontine structures established by early postnatal ages may make these regions more susceptible to neuronal dysfunction in NP-C disease. [source]


Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 5 2007
Peter Diggle
Summary. The problem of analysing longitudinal data that are complicated by possibly informative drop-out has received considerable attention in the statistical literature. Most researchers have concentrated on either methodology or application, but we begin this paper by arguing that more attention could be given to study objectives and to the relevant targets for inference. Next we summarize a variety of approaches that have been suggested for dealing with drop-out. A long-standing concern in this subject area is that all methods require untestable assumptions. We discuss circumstances in which we are willing to make such assumptions and we propose a new and computationally efficient modelling and analysis procedure for these situations. We assume a dynamic linear model for the expected increments of a constructed variable, under which subject-specific random effects follow a martingale process in the absence of drop-out. Informal diagnostic procedures to assess the tenability of the assumption are proposed. The paper is completed by simulations and a comparison of our method and several alternatives in the analysis of data from a trial into the treatment of schizophrenia, in which approximately 50% of recruited subjects dropped out before the final scheduled measurement time. [source]


Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer,

THE JOURNAL OF PATHOLOGY, Issue 1 2007
K Sahadevan
Abstract Fibroblast growth factor receptors (FGFRs) mediate the tumourigenic effects of FGFs in prostate cancer. These receptors are therefore potential therapeutic targets in the development of inhibitors to this pathway. To identify the most relevant targets, we simultaneously investigated FGFR1,4 expression using a prostate cancer tissue microarray (TMA) and in laser capture microdissected (LCM) prostate epithelial cells. In malignant prostates (n = 138) we observed significant FGFR1 and FGFR4 protein over-expression in comparison with benign prostates (n = 58; p < 0.0001). FGFR1 was expressed at high levels in the majority of tumours (69% of grade 3 or less, 74% of grade 4 and 70% of grade 5), while FGFR4 was strongly expressed in 83% of grade 5 cancers but in only 25% of grade 1,3 cancers (p < 0.0001). At the transcript level we observed a similar pattern, with FGFR1 and FGFR4 mRNA over-expressed in malignant epithelial cells compared to benign cells (p < 0.0005 and p < 0.05, respectively). While total FGFR2 was increased in some cancers, there was no association between expression and tumour grade or stage. Transcript analysis, however, revealed a switch in the predominant isoform expressed from FGFR2IIIb to FGFR2IIIc among malignant epithelial cells. In contrast, protein and transcript expression of FGFR3 was very similar between benign and cancer biopsies. The functional effect of targeting FGFR4 in prostate cancer cells has not previously been investigated. In in vitro experiments, suppression of FGFR4 by RNA interference effectively blocked prostate cancer cell proliferation (p < 0.0001) and invasion (p < 0.001) in response to exogenous stimulation. This effect was evident regardless of whether the cells expressed the FGFR4 Arg388 or Gly388 allele. In parallel experiments, FGFR3 suppression had no discernible effect on cancer cell behaviour. These results suggest evidence of selective over-expression of FGFR1 and FGFR4 in clinical prostate cancer and support the notion of targeted inhibition of these receptors to disrupt FGF signalling. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]