Relay Cells (relay + cell)

Distribution by Scientific Domains


Selected Abstracts


A model of thalamocortical relay cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Paul A. Rhodes
It is well established that the main intrinsic electrophysiological properties of thalamocortical relay cells, production of a low threshold burst upon release from hyperpolarized potential and production of a train of single spikes following stimulation from depolarized potentials, can be readily modelled using a single compartment. There is, however, another less well explored intrinsic electrophysiological characteristic of relay cells for which models have not yet accounted: at somatic potentials near spike threshold, relay cells produce a fast ragged high threshold oscillation in somatic voltage. Optical [Ca2+] imaging and pharmacological tests indicate that this oscillation correlates with a high threshold Ca2+ current in the dendrites. Here we present the development of a new compartment model of the thalamic relay cell guided by the simultaneous constraints that it must produce the familiar regular spiking relay mode and low threshold rebound bursts which characterize these cells, as well as the less-studied fast oscillation occurring at near-threshold somatic potentials. We arrive at a model cell which is capable of the production of isolated high threshold Ca2+ spikes in distal branch segments, driven by a rapidly inactivating intermediate threshold Ca2+ channel. Further, the model produces the low threshold spike behaviour of the relay cell without requiring high T-current density in the distal dendritic segments. The results thus support a new picture of the dendritic tree of relay cells which may have implications for the manner in which thalamic relay cells integrate descending input from the cortex. [source]


Selective GABAergic innervation of thalamic nuclei from zona incerta

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002
P. Barthó
Abstract Thalamocortical circuits that govern cortical rhythms and ultimately effect sensory transmission consist of three major interconnected elements: excitatory thalamocortical and corticothalamic neurons and GABAergic cells in the reticular thalamic nucleus. Based on the present results, a fourth component has to be added to this scheme. GABAergic fibres from an extrareticular diencephalic source were found to selectively innervate relay cells located mainly in higher-order thalamic nuclei. The origin of this pathway was localized to zona incerta (ZI), known to receive collaterals from corticothalamic fibres. First-order nuclei were innervated only in zones showing a high density of calbindin-positive neurons. The large GABA-immunoreactive incertal terminals established multiple contacts preferentially on the proximal dendrites of relay cells via symmetrical synapses with multiple release sites. The distribution, ultrastructural characteristics and postsynaptic target selection of extrareticular terminals were similar to type II muscarinic acetylcholine receptor-positive boutons, which constituted up to 49% of all GABAergic terminals in the posterior nucleus. This suggests that a significant proportion of the GABAergic input into certain thalamic territories involved in higher-order functions may have extrareticular origin. Unlike the reticular nucleus, ZI receives peripheral and layer V cortical input but no thalamic feedback; it projects to brainstem centres and has extensive intranuclear recurrent collaterals. This indicates that ZI exerts a conceptually new type of inhibitory control over the thalamus. The proximally situated, multiple active zones of ZI terminals indicate a powerful influence on the firing properties of thalamic neurons, which is conveyed to multiple cortical areas via relay cells which have widespread projections to neocortex. [source]


A model of thalamocortical relay cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Paul A. Rhodes
It is well established that the main intrinsic electrophysiological properties of thalamocortical relay cells, production of a low threshold burst upon release from hyperpolarized potential and production of a train of single spikes following stimulation from depolarized potentials, can be readily modelled using a single compartment. There is, however, another less well explored intrinsic electrophysiological characteristic of relay cells for which models have not yet accounted: at somatic potentials near spike threshold, relay cells produce a fast ragged high threshold oscillation in somatic voltage. Optical [Ca2+] imaging and pharmacological tests indicate that this oscillation correlates with a high threshold Ca2+ current in the dendrites. Here we present the development of a new compartment model of the thalamic relay cell guided by the simultaneous constraints that it must produce the familiar regular spiking relay mode and low threshold rebound bursts which characterize these cells, as well as the less-studied fast oscillation occurring at near-threshold somatic potentials. We arrive at a model cell which is capable of the production of isolated high threshold Ca2+ spikes in distal branch segments, driven by a rapidly inactivating intermediate threshold Ca2+ channel. Further, the model produces the low threshold spike behaviour of the relay cell without requiring high T-current density in the distal dendritic segments. The results thus support a new picture of the dendritic tree of relay cells which may have implications for the manner in which thalamic relay cells integrate descending input from the cortex. [source]