Home About us Contact | |||
Relaxation Parameters (relaxation + parameter)
Selected AbstractsMagnetoimpedance (MI) in amorphous wires: new materials and applicationsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 4 2009Larissa V. Panina Abstract The discovery of the magnetoimpedance (MI) effect in 1994 had a strong impact on the development of magnetic sensors. Along with traditional areas of sensing applications (data storage, bio-medical electronics, robotics and security), the MI elements have a high potential for applications in smart sensory systems (self-sensing composites) operating at microwave frequencies owing to still very large MI ratios of 50,100% in Co-rich amorphous wires at GHz frequencies. Here we introduce two types of MI wire composites: 2D-arrays and mixtures of wire pieces. In such materials the effective permittivity has strong dispersion in a frequency band determined by a plasma frequency or a dipole resonance, respectively. If MI wires are used as constituent elements, this dispersion may be very sensitive to the magnetic properties of wires since the wire impedance determines the relaxation parameter of the effective permittivity. For example, increasing the wire impedance by establishing the magnetisation along the axis with an external magnetic field broadens the resonance band, decreases the reflection amplitude and may open a bandpass. Depending on the magnetic anisotropy in wires, tuning can be realized with both magnetic field and stress. It is foreseen that MI-wire composite materials could be suitable for large scale applications, in particular, for free space filters in secure wireless systems and for microwave nondestructive testing and control in civil engineering. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Cross-correlated and conventional dipolar carbon-13 relaxation in methylene groups in small, symmetric moleculesCONCEPTS IN MAGNETIC RESONANCE, Issue 2 2007Leila Ghalebani Abstract A theory for dipolar cross-correlated relaxation processes in AMX or AX2 spin system, with special reference to 13C-methylene groups, is reviewed briefly. Simple experiments and protocols for measuring the transfer rates between the carbon-13 Zeeman order and the three-spin order, and for their analogues in the transverse plane, are discussed using a concentrated solution of the disaccharide trehalose as a model system. Experimental data sets consisting of conventional carbon-13 relaxation parameters (T1, T2, and NOE), along with the cross-correlated relaxation rates, are also presented for some small, rigid, polycyclic molecules. These data are interpreted using spectral density functions appropriate to spherical or symmetric tops reorienting according to small-step rotational diffusion model. The analysis results in a consistent picture of the auto- and cross-correlated spin relaxation processes. © 2007 Wiley Periodicals, Inc. Concepts Magn Reson Part A 30A: 100,115, 2007. [source] A modification of the artificial compressibility algorithm with improved convergence characteristicsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2007Frank Muldoon Abstract The artificial compressibility algorithm has a significant drawback in the difficulty of choosing the artificial compressibility parameter, improper choice of which leads either to slow convergence or divergence. A simple modification of the equation for pressure in the artificial compressibility algorithm which removes the difficulty of choosing the artificial compressibility parameter is proposed. It is shown that the choice of the relaxation parameters for the new algorithm is relatively straightforward, and that the same values can be used to provide robust convergence for a range of application problems. This new algorithm is easily parallelized making it suitable for computations such as direct numerical simulation (DNS) which require the use of distributed memory machines. Two key benchmark problems are studied in evaluating the new algorithm: DNS of a fully developed turbulent channel flow, and DNS of a driven-cavity flow, using both explicit and implicit time integration schemes. The new algorithm is also validated for a more complex flow configuration of turbulent flow over a backward-facing step, and the computed results are shown to be in good agreement with experimental data and previous DNS work. Copyright © 2007 John Wiley & Sons, Ltd. [source] Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time schemeINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2004J.-S. Wu Abstract Two-dimensional near-incompressible steady lid-driven cavity flows (Re = 100,7,500) are simulated using multi-relaxation-time (MRT) model in the parallel lattice Boltzmann BGK Bhatnager,Gross,Krook method (LBGK). Results are compared with those using single-relaxation-time (SRT) model in the LBGK method and previous simulation data using Navier,Stokes equations for the same flow conditions. Effects of variation of relaxation parameters in the MRT model, effects of number of the lattice points, improved computational convergence and reduced spatial oscillations of solution near geometrically singular points in the flow field using LBGK method due to MRT model are highlighted in the study. In summary, lattice Boltzmann method using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows. Copyright © 2004 John Wiley & Sons, Ltd. [source] Full-vectorial to scalar FD-SOR formulations for optical waveguide modelling: a comparative studyINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 6 2006D.H. Spadoti Abstract This paper presents a comparative study among three different formulations to analyse optical waveguides. All treatments, namely, full-vectorial, semi-vectorial, and scalar are based on the successive over relaxation-SOR technique. A complete expansion of these three formulations together with a convergence study of the respective iterative relaxation parameters are also provided. Several waveguiding structures are investigated in this work, including D-shaped fibres, rib waveguides, and photonic crystal fibres, addressing the accuracy of the several FD-SOR formulations implemented. It is demonstrated that the semi-vectorial approach produces excellent results when compared to those obtained with the full-vectorial treatment. Copyright © 2006 John Wiley & Sons, Ltd. [source] Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin compositesJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2007Irini D. Sideridou Abstract In the present investigation the sorption,desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption,desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion,relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported for all resins and composites. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source] Three-dimensional balanced steady state free precession imaging of the prostate: Flip angle dependency of the signal based on a two component T2-decay modelJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 5 2010Tryggve H. Storås MS Abstract Purpose: To investigate the contrast of three-dimensional balanced steady state free precession (3D bSSFP) in the two component T2 model and to apply the results to optimize 3D bSSFP for prostate imaging at 1.5 Tesla. Materials and Methods: In each of seven healthy volunteers, six 3D bSSFP acquisitions were performed with flip angles (,) equally spaced between 10° and 110°. Predictions of signal and contrast were obtained from synthetic bSSFP images calculated from relaxation parameters obtained from a multi-spin-echo acquisition. One biexponential and two monoexponential models were applied. Measured and predicted signals were compared by simple linear regression. Results: The measured contrast to signal ratio increased continuously with ,. Mean R2 for the biexponential model was almost constant for , in the range 50,110°. The biexponential model was a better predictor of the measured signal than the monoexponential model. A monoexponential model restricted to the echoes TE = 50,125 ms performed similar to the biexponential model. The predicted contrast peaked at , between 50° and 90°. Conclusion: Prostate imaging with bSSFP benefited from high flip angles. The biexponential model provided good signal prediction while predictions from the monoexponential models are dependent on the range of TE used for T2 determination. J. Magn. Reson. Imaging 2010;31:1124,1131. © 2010 Wiley-Liss, Inc. [source] Quantitation of crystalline and amorphous forms of anhydrous neotame using 13C CPMAS NMR spectroscopyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2005Thomas J. Offerdahl Abstract Although most drugs are formulated in the crystalline state, amorphous or other crystalline forms are often generated during the formulation process. The presence of other forms can dramatically affect the physical and chemical stability of the drug. The identification and quantitation of different forms of a drug is a significant analytical challenge, especially in a formulated product. The ability of solid-state 13C NMR spectroscopy with cross polarization (CP) and magic-angle spinning (MAS) to quantify the amounts of three of the multiple crystalline and amorphous forms of the artificial sweetener neotame is described. It was possible to quantify, in a mixture of two anhydrous polymorphic forms of neotame, the amount of each polymorph within 1,2%. In mixtures of amorphous and crystalline forms of neotame, the amorphous content could be determined within 5%. It was found that the crystalline standards that were used to prepare the mixtures were not pure crystalline forms, but rather a mixture of crystalline and amorphous forms. The effect of amorphous content in the crystalline standards on the overall quantitation of the two crystalline polymorphic forms is discussed. The importance of differences in relaxation parameters and CP efficiencies on quantifying mixtures of different forms using solid-state NMR spectroscopy is also addressed. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:2591,2605, 2005 [source] Correlation Between Thermal and Mechanical Relaxation in Chalcogenide Glass FibersJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2009Pierre Lucas Enthalpy relaxation processes in chalcogenide fibers at room temperature are investigated by differential scanning calorimetry and compared with bending-stress relaxation measurements obtained by rolling fibers on a mandrel and recording the viscoelastic relaxation parameters. While the kinetics of the two processes is very different, several qualitative correlations are demonstrated between the enthalpy state and the mechanical properties of chalcogenide glass fibers. It is observed that the ability to undergo stress relaxation is dependent upon the fictive temperature of the glass. Stress relaxation in a glass far from thermodynamic equilibrium is contingent upon its ability to undergo enthalpy relaxation and is minimal in glasses that have already relaxed enthalpy or in which relaxation time is overwhelmingly large. [source] Broadband proton-decoupled proton spectra,MAGNETIC RESONANCE IN CHEMISTRY, Issue 4 2007Andrew J. Pell Abstract We present a new method for recording broadband proton-decoupled proton spectra with absorption mode lineshapes and substantially correct integrals; in both these respects, the new method has significant advantages over conventional J -spectroscopy. In our approach, the decoupled spectrum is simply obtained from the 45° projection of the diagonal-peak multiplets of an anti z -COSY spectrum. This method is straightforward to apply, and does not require any unusual data processing. However, there is a significant reduction in sensitivity when compared to a conventional proton spectrum. The method is demonstrated for typical medium-sized molecules, and it is also shown how such a decoupled spectrum can be used to advantage in measurements of diffusion constants (DOSY), the measurement of relaxation parameters, and the analysis of complex mixtures. Copyright © 2007 John Wiley & Sons, Ltd. [source] Manganese ions as intracellular contrast agents: proton relaxation and calcium interactions in rat myocardiumNMR IN BIOMEDICINE, Issue 2 2003Wibeke Nordhøy Abstract Paramagnetic manganese (Mn) ions (Mn2+) are taken up into cardiomyocytes where they are retained for hours. Mn content and relaxation parameters, T1 and T2, were measured in right plus left ventricular myocardium excised from isolated perfused rat hearts. In the experiments 5,min wash-in of MnCl2 were followed by 15,min wash-out to remove extracellular (ec) Mn2+ MnCl2, 25 and 100,µM, elevated tissue Mn content to six and 12 times the level of control (0,µM MnCl2). Variations in perfusate calcium (Ca2+) during wash-in of MnCl2 and experiments including nifedipine showed that myocardial slow Ca2+ channels are the main pathway for Mn2+ uptake and that Mn2+ acts as a pure Ca2+ competitor and a preferred substrate for slow Ca2+ channel entry. Inversion recovery analysis at 20,MHz revealed two components for longitudinal relaxation: a short T1,,,1 and a longer T1,,,2. Approximate values for control and Mn-treated hearts were in the range 600,125,ms for T1,,,1 and 2200,750,ms for T1,,,2. The population fractions were about 59 and 41% for the short and the long component, respectively. The intracellular (ic) R1,,,1 and R2,,,1 correlated best with tissue Mn content. Applying two-site exchange analyses on the obtained T1 data yielded results in parallel to, but also differing from, results reported with an ec contrast agent. The calculated lifetime of ic water (,ic) of about 10,s is compatible with a slow water exchange in the present excised cardiac tissue. The longitudinal relaxivity of Mn ions in ic water [60 (s mM),1] was about one order of magnitude higher than that of MnCl2 in water in vitro [6.9 (s mM),1], indicating that ic Mn-protein binding is an important potentiating factor in relaxation enhancement. Copyright © 2003 John Wiley & Sons, Ltd. [source] Dynamical characterization of residual and non-native structures in a partially folded protein by 15N NMR relaxation using a model based on a distribution of correlation timesPROTEIN SCIENCE, Issue 4 2002Françoise Ochsenbein Abstract A spectral density model based on a truncated lorentzian distribution of correlation times is used to analyze the nanosecond time-scale dynamics of the partially unfolded domain 2 of annexin I from its 15N NMR relaxation parameters measured at three magnetic field strengths. The use of a distribution of correlation times enables the characterization of the dynamical features of the NH bonds of the protein in terms of heterogeneity of dynamical states in the nanosecond range. The variation along the sequence of the two dynamical parameters introduced, namely the center and the width of the distribution, points out the different types of residual secondary structures present in the D2 domain. Moreover, it allows a physically sensible interpretation of the dynamical behavior of the different residual helices and of the non-native structures. Also, a striking correspondence is found between the parameters obtained using an extended Lipari and Szabo model and the parameters obtained using the distribution of correlation times. This result led us to propose a specific interpretation of the model-free order parameter for internal motions in the nanosecond range in the case of unfolded states. [source] |