Region Essential (region + essential)

Distribution by Scientific Domains


Selected Abstracts


The essential role of Broca's area in imitation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2003
Marc Heiser
Abstract The posterior sector of Broca's area (Brodmann area 44), a brain region critical for language, may have evolved from neurons active during observation and execution of manual movements. Imaging studies showing increased Broca's activity during execution, imagination, imitation and observation of hand movements support this hypothesis. Increased Broca's activity in motor task, however, may simply be due to inner speech. To test whether Broca's area is essential to imitation, we used repetitive transcranial magnetic stimulation (rTMS), which is known to transiently disrupt functions in stimulated areas. Subjects imitated finger key presses (imitation) or executed finger key presses in response to spatial cues (control task). While performing the tasks, subjects received rTMS over the left and right pars opercularis of the inferior frontal gyrus (where Brodmann area 44 is probabilistically located) and over the occipital cortex. There was significant impairment in imitation, but not in the control task, during rTMS over left and right pars opercularis compared to rTMS over the occipital cortex. This suggests that Broca's area is a premotor region essential to finger movement imitation. [source]


The C-terminal region of CHD3/ZFH interacts with the CIDD region of the Ets transcription factor ERM and represses transcription of the human presenilin 1 gene

FEBS JOURNAL, Issue 6 2007
Martine Pastorcic
Presenilins are required for the function of ,-secretase: a multiprotein complex implicated in the development of Alzheimer's disease (AD). We analyzed expression of the presenilin 1 (PS1) gene. We show that ERM recognizes avian erythroblastosis virus E26 oncogene homolog (Ets) motifs on the PS1 promoter located at ,10, +90, +129 and +165, and activates PS1 transcription with promoter fragments containing or not the ,10 Ets site. Using yeast two-hybrid selection we identified interactions between the chromatin remodeling factor CHD3/ZFH and the C-terminal 415 amino acids of ERM used as bait. Clones contained the C-terminal region of CHD3 starting from amino acid 1676. This C-terminal fragment (amino acids 1676,2000) repressed transcription of the PS1 gene in transfection assays and PS1 protein expression from the endogenous gene in SH-SY5Y cells. In cells transfected with both CHD3 and ERM, activation of PS1 transcription by ERM was eliminated with increasing levels of CHD3. Progressive N-terminal deletions of CHD3 fragment (amino acids 1676,2000) indicated that sequences crucial for repression of PS1 and interactions with ERM in yeast two-hybrid assays are located between amino acids 1862 and 1877. This was correlated by the effect of progressive C-terminal deletions of CHD3, which indicated that sequences required for repression of PS1 lie between amino acids 1955 and 1877. Similarly, deletion to amino acid 1889 eliminated binding in yeast two-hybrid assays. Testing various shorter fragments of ERM as bait indicated that the region essential for binding CHD3/ZFH is within the amino acid region 96,349, which contains the central inhibitory DNA-binding domain (CIDD) of ERM. N-Terminal deletions of ERM showed that residues between amino acids 200 and 343 are required for binding to CHD3 (1676,2000) and C-terminal deletions of ERM indicated that amino acids 279,299 are also required. Furthermore, data from chromatin immunoprecipitation (ChIP) indicate that CHD3/ZFH interacts with the PS1 promoter in vivo. [source]


Inhibitory effects of soluble MD-2 and soluble CD14 on bacterial growth

MICROBIOLOGY AND IMMUNOLOGY, Issue 2 2010
Takahiro Ohnishi
ABSTRACT The effects of the soluble forms of the endotoxin receptor molecules sMD-2 and sCD14 on bacterial growth were studied. When Escherichia coli and Bacillus subtilis were incubated at 37°C for 18 hr with either sMD-2 or sCD14, growth of these bacteria was significantly inhibited as evaluated by viable cell counts and NADPH/NADH activity. A mutant of sCD14 (sCD14d57-64) lacking a region essential for LPS binding did not inhibit the growth of E. coli, whereas this mutant did inhibit the growth of B. subtilis. Addition of excess PG to the bacterial culture reversed the inhibitory effect of sMD-2 on the growth of B. subtilis, but not on the growth of E. coli. Furthermore, when evaluated by ELISA, both sMD-2 and sCD14 bound specifically to PG. Taken together, these results indicate that sMD-2 and sCD14 inhibit the growth of both Gram-positive and Gram-negative bacteria and further suggest that binding to PG and LPS is involved in the inhibitory effect of sMD-2 on Gram-positive bacteria and of sCD14 on Gram-negative bacteria, respectively. [source]


Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase

MOLECULAR MICROBIOLOGY, Issue 2 2003
Boris D. Dorokhov
Summary The temperate coliphage N15, unlike most low copy-number prokaryotic replicons, is maintained as a linear DNA molecule with covalently closed ends. Accurate partitioning of the plasmid prophage is assured by a close homologue of the sop locus of the F plasmid. However, the region upstream of the N15 sopAB genes contains multiple putative promoters, in contrast to F sop whose expression is driven by one negatively autoregulated promoter. In addition, the centromere of N15 is represented by four inverted repeats located at widely separated sites within the region essential for replication and control of lytic functions. We have analysed expression of N15 sop genes. We find that transcription of N15 sop is driven by two major promoters. The first, P1, is similar in sequence and function to the F sop promoter; it is repressed by Sop proteins. The second promoter, P2, is upstream of P1 and is several times stronger. It is insensitive to regulation by Sop proteins but is tightly repressed by protelomerase, the N15 enzyme that completes prophage replication by generating hairpin telomeres. These results establish a regulatory link between the partition system and other processes of N15 maintenance. [source]